Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267696

RESUMO

Developing a novel class of vaccine is pivotal for eliminating and eradicating malaria. Preceding investigations demonstrated partial blocking activity in malaria transmission against recombinant vaccine PfHAP2-GCS1 and conserved region of the cd loop. The effectiveness of immune response varies with the size and shape of the self-assembly of peptide nanoparticles (SAPNs) displaying antigen, affected by different components in refolding buffers. Plasmodium falciparum Generative Cell Specific 1 (PfGCS1), a promising malaria transmission-blocking vaccine (TBV) candidate, was expressed, purified, and followed by a four-step refolding process to form nanoparticles (PfGCS1-SAPNs). The influence of buffer components on the size and shape of SAPNs was investigated by DLS and FESEM. Furthermore, the immunogenicity of nanostructures was assessed in different mouse groups. The results showed that PfGCS1-SAPN was immunogenic and its administration with Poly (I:C), stimulated humoral and cellular responses in the mouse model. In the immunized mice groups, the level of IgG antibodies against PfGCS1-SAPN was significantly increased in different time points (second and third boost) and heterogeneous boosters. The various IgG-subclasses profile shifted to Th1, Th2, or Th1/Th2 mix responses in mice immunized with PfGCS1-SAPN refolded in different buffers, indicating a prerequisite for further investigations to optimize vaccine formulation to enhance and modulate Th1/cellular responses. Such studies pave the way to improve biophysical features related to the nanoparticles' size, shape, and conformational epitopes of candidate antigens and T- and B-cells presented on the superficial structure to elicit robust immune responses.

2.
Compr Rev Food Sci Food Saf ; 19(6): 3390-3415, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337065

RESUMO

There are many critical challenges in the use of primary and secondary cultures and their biological compounds in food commodities. An alternative is the application of postbiotics from the starter and protective lactic acid bacteria (LAB). The concept of postbiotics is relatively new and there is still not a recognized definition for this term. The word "postbiotics" is currently used to refer to bioactive compounds, which did not fit to the traditional definitions of probiotics, prebiotics, and paraprobiotics. Therefore, the postbiotics may be presently defined as bioactive soluble factors (products or metabolic byproducts), produced by some food-grade microorganisms during the growth and fermentation in complex microbiological culture (in this case named cell-free supernatant), food, or gut, which exert some benefits to the food or the consumer. Many LAB are considered probiotic and their postbiotic compounds present similar or additional health benefits to the consumer; however, this review aimed to address the most recent applications of the postbiotics with food safety purposes. The potential applications of postbiotics in food biopreservation, food packaging, and biofilm control were reviewed. The current uses of postbiotics in the reduction and biodegradation of some food safety-related chemical contaminants (e.g., biogenic amines) were considered. We also discussed the safety aspects, the obstacles, and future perspectives of using postbiotics in the food industry. This work will open up new insights for food applications of postbiotics prepared from LAB.


Assuntos
Fermentação , Inocuidade dos Alimentos/métodos , Lactobacillales/química , Microbiologia de Alimentos , Embalagem de Alimentos , Conservação de Alimentos , Probióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...