Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2241): 20210414, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36463920

RESUMO

Novel magnetic materials are important for future technological advances. Theoretical and numerical calculations of ground-state properties are essential in understanding these materials, however, computational complexity limits conventional methods for studying these states. Here we investigate an alternative approach to preparing materials ground states using the quantum approximate optimization algorithm (QAOA) on near-term quantum computers. We study classical Ising spin models on unit cells of square, Shastry-Sutherland and triangular lattices, with varying field amplitudes and couplings in the material Hamiltonian. We find relationships between the theoretical QAOA success probability and the structure of the ground state, indicating that only a modest number of measurements ([Formula: see text]) are needed to find the ground state of our nine-spin Hamiltonians, even for parameters leading to frustrated magnetism. We further demonstrate the approach in calculations on a trapped-ion quantum computer and succeed in recovering each ground state of the Shastry-Sutherland unit cell with probabilities close to ideal theoretical values. The results demonstrate the viability of QAOA for materials ground state preparation in the frustrated Ising limit, giving important first steps towards larger sizes and more complex Hamiltonians where quantum computational advantage may prove essential in developing a systematic understanding of novel materials. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.

2.
Sci Rep ; 12(1): 12388, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858955

RESUMO

The quantum approximate optimization algorithm (QAOA) is an approach for near-term quantum computers to potentially demonstrate computational advantage in solving combinatorial optimization problems. However, the viability of the QAOA depends on how its performance and resource requirements scale with problem size and complexity for realistic hardware implementations. Here, we quantify scaling of the expected resource requirements by synthesizing optimized circuits for hardware architectures with varying levels of connectivity. Assuming noisy gate operations, we estimate the number of measurements needed to sample the output of the idealized QAOA circuit with high probability. We show the number of measurements, and hence total time to solution, grows exponentially in problem size and problem graph degree as well as depth of the QAOA ansatz, gate infidelities, and inverse hardware graph degree. These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.

3.
Sci Rep ; 12(1): 6781, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35474081

RESUMO

The quantum approximate optimization algorithm (QAOA) generates an approximate solution to combinatorial optimization problems using a variational ansatz circuit defined by parameterized layers of quantum evolution. In theory, the approximation improves with increasing ansatz depth but gate noise and circuit complexity undermine performance in practice. Here, we investigate a multi-angle ansatz for QAOA that reduces circuit depth and improves the approximation ratio by increasing the number of classical parameters. Even though the number of parameters increases, our results indicate that good parameters can be found in polynomial time for a test dataset we consider. This new ansatz gives a 33% increase in the approximation ratio for an infinite family of MaxCut instances over QAOA. The optimal performance is lower bounded by the conventional ansatz, and we present empirical results for graphs on eight vertices that one layer of the multi-angle anstaz is comparable to three layers of the traditional ansatz on MaxCut problems. Similarly, multi-angle QAOA yields a higher approximation ratio than QAOA at the same depth on a collection of MaxCut instances on fifty and one-hundred vertex graphs. Many of the optimized parameters are found to be zero, so their associated gates can be removed from the circuit, further decreasing the circuit depth. These results indicate that multi-angle QAOA requires shallower circuits to solve problems than QAOA, making it more viable for near-term intermediate-scale quantum devices.

4.
Phys Rev E ; 104(5-1): 054101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942741

RESUMO

A model computational quantum thermodynamic network is constructed with two variable temperature baths coupled by a linker system, with an asymmetry in the coupling of the linker to the two baths. It is found in computational simulations that the baths come to "thermal equilibrium" at different bath energies and temperatures. In a sense, heat is observed to flow from cold to hot. A description is given in which a recently defined quantum entropy S_{univ}^{Q} for a pure state "universe" continues to increase after passing through the classical equilibrium point of equal temperatures, reaching a maximum at the asymmetric equilibrium. Thus, a second law account ΔS_{univ}^{Q}≥0 holds for the asymmetric quantum process. In contrast, a von Neumann entropy description fails to uphold the entropy law, with a maximum near when the two temperatures are equal, then a decrease ΔS^{vN}<0 on the way to the asymmetric equilibrium.

5.
Phys Rev E ; 100(4-1): 042105, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770971

RESUMO

We construct a finite bath with variable temperature for quantum thermodynamic simulations in which heat flows between a system S and the bath environment E in time evolution of an initial SE pure state. The bath consists of harmonic oscillators that are not necessarily identical. Baths of various numbers of oscillators are considered; a bath with five oscillators is used in the simulations. The bath has a temperaturelike level distribution. This leads to definition of a system-environment microcanonical temperature T_{SE}(t) which varies with time. The quantum state evolves toward an equilibrium state which is thermal-like, but there is significant deviation from the ordinary energy-temperature relation that holds for an infinite quantum bath, e.g., an infinite system of identical oscillators. There are also deviations from the Einstein quantum heat capacity. The temperature of the finite bath is systematically greater for a given energy than the infinite bath temperature, and asymptotically approaches the latter as the number of oscillators increases. It is suggested that realizations of these finite-size effects may be attained in computational and experimental dynamics of small molecules.

6.
J Phys Chem A ; 123(4): 831-840, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30550278

RESUMO

A recent proposal for a quantum entropy S univ Q for a pure state of a system-environment "universe" is developed to encompass a much more realistic temperature bath. Microcanonical entropy is formulated in the context of the idea of a quantum microcanonical shell. The fundamental relation that holds for the classical microcanonical ensemble - TΔ S univ = Δ F sys is tested for the quantum entropy Δ S univ Q in numerical simulations. It is found that there is "excess entropy production" Δ S x due to quantum time-energy uncertainty and spreading of states in the zero-order basis. The excess entropy production is found numerically to become small as the magnitude of the system-environment coupling nears zero, as one would hope for in the limit of the classical microcanonical ensemble. The quantum microcanonical ensemble and the new "universe entropy" thereby appear as well-founded concepts poised to serve as a point of departure for time-dependent processes in which excess entropy production is physically significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...