Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(15): 6994-7000, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470766

RESUMO

Mechanical pressure controls the structural, electric, and magnetic order in solid-state systems, allowing tailoring of their physical properties. A well-established example is ferroelastic ferroelectrics, where the coupling between pressure and the primary symmetry-breaking order parameter enables hysteretic switching of the strain state and ferroelectric domain engineering. Here, we study the pressure-driven response in a nonferroelastic ferroelectric, ErMnO3, where the classical stress-strain coupling is absent and the domain formation is governed by creation-annihilation processes of topological defects. By annealing ErMnO3 polycrystals under variable pressures in the MPa regime, we transform nonferroelastic vortex-like domains into stripe-like domains. The width of the stripe-like domains is determined by the applied pressure as we confirm by three-dimensional phase field simulations, showing that pressure leads to oriented layer-like periodic domains. Our work demonstrates the possibility to utilize mechanical pressure for domain engineering in nonferroelastic ferroelectrics, providing a lever to control their dielectric and piezoelectric responses.

2.
Science ; 377(6610): 1109-1112, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048962

RESUMO

The utility of ferroic materials is determined by the formation of domains and their poling behavior under externally applied fields. For multiferroics, which exhibit several types of ferroic order at once, it is also relevant how the domains of the coexisting ferroic states couple and what kind of functionality this might involve. In this work, we demonstrate the reversible transfer of a domain pattern between magnetization and electric-polarization space in the multiferroic Dy0.7Tb0.3FeO3. A magnetic field transfers a ferromagnetic domain pattern into an identical ferroelectric domain pattern while erasing it at its magnetic origin. Reverse transfer completes the cycle. To assess the generality of our experiment, we elaborate on its conceptual origin and aspects of application.

3.
Nat Commun ; 12(1): 3093, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035244

RESUMO

Magnetically induced ferroelectrics exhibit rigidly coupled magnetic and electric order. The ordering temperatures and spontaneous polarization of these multiferroics are notoriously low, however. Both properties can be much larger if magnetic and ferroelectric order occur independently, but the cost of this independence is that pronounced magnetoelectric interaction is no longer obvious. Using spatially resolved images of domains and density-functional theory, we show that in multiferroics with separately emerging magnetic and ferroelectric order, the microscopic magnetoelectric coupling can be intrinsically strong even though the macroscopic leading-order magnetoelectric effect is forbidden by symmetry. We show, taking hexagonal ErMnO3 as an example, that a strong bulk coupling between the ferroelectric and antiferromagnetic order is realized because the structural distortions that lead to the ferroelectric polarization also break the balance of the competing superexchange contributions. We observe the manifestation of this coupling in uncommon types of topological defects like magnetoelectric domain walls and vortex-like singularities.

4.
Nat Mater ; 5(12): 937-41, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17086170

RESUMO

Nanoscale self-organization of electrons is ubiquitously observed in correlated electron systems such as complex oxides of transition metals. The phenomenon of charge ordering (CO) or the formation of charge stripes, as observed for layered-structure cuprates and nickelates, is one such example. Among them, CO in manganites is closely tied to the orbital degree of freedom of 3d electrons, leading to staggered orbital ordering or the formation of orbital stripes in the layered structure. Here, we describe the phenomena of thermally induced rotation of the orbital stripes by 90( composite function) for bilayered manganite crystals with half hole doping, that is, a 1:1 ratio of Mn3+/Mn4+. The rotation of orbital stripes and the consequent CO coupled with the underlying lattice distortion were found to produce the charge-polarized state, as also shown by its optical second-harmonic generation activity.

5.
Nature ; 430(6999): 541-4, 2004 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15282600

RESUMO

The quest for higher data density in information storage is motivating investigations into approaches for manipulating magnetization by means other than magnetic fields. This is evidenced by the recent boom in magnetoelectronics and 'spintronics', where phenomena such as carrier effects in magnetic semiconductors and high-correlation effects in colossal magnetoresistive compounds are studied for their device potential. The linear magnetoelectric effect-the induction of polarization by a magnetic field and of magnetization by an electric field-provides another route for linking magnetic and electric properties. It was recently discovered that composite materials and magnetic ferroelectrics exhibit magnetoelectric effects that exceed previously known effects by orders of magnitude, with the potential to trigger magnetic or electric phase transitions. Here we report a system whose magnetic phase can be controlled by an external electric field: ferromagnetic ordering in hexagonal HoMnO3 is reversibly switched on and off by the applied field via magnetoelectric interactions. We monitor this process using magneto-optical techniques and reveal its microscopic origin by neutron and X-ray diffraction. From our results, we identify basic requirements for other candidate materials to exhibit magnetoelectric phase control.

6.
Opt Lett ; 29(1): 41-3, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14719654

RESUMO

An interferometric imaging setup is described that allows us to map the spatial distribution of the phase of a second-harmonic (SH) wave by using multimode laser sources with achromatic beam imaging of the fundamental and SH waves. Working distances > 1 m and a robust setup allow experiments that were not possible before.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...