Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 65(5): 775-780, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548349

RESUMO

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.


Assuntos
Antígenos CD , Antígenos de Diferenciação Mielomonocítica , Aterosclerose , Macrófagos , Tomografia por Emissão de Pósitrons , Receptores de Superfície Celular , Animais , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Radioisótopos de Cobre , Distribuição Tecidual , Compostos Radiofarmacêuticos/farmacocinética
2.
ACS Appl Mater Interfaces ; 14(33): 37667-37680, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35968674

RESUMO

The interfacial oxygen-defective sites of oxide-supported metal catalysts are generally regarded as active centers in diverse redox reactions. Identification of their structure-property relationship at the atomic scale is of great importance but challenging. Herein, a series of La3+-doped three-dimensionally ordered macroporous CeO2 (3D-Ce1-xLaxO2-δ) were synthesized and applied as supports for Pt nanoparticles. The pieces of evidence from a suite of in-situ/ex-situ characterizations and theoretical calculations revealed that the La3+-mono-substituted La-□(-Ce)2 sites (where □ represents an oxygen vacancy) exhibited superior charge transfer ability, behaving as trapping centers for Pt nanoparticles. The resulting interfacial Ptδ+/La-□(-Ce)2 sites served as the reversible active species in the aerobic oxidation of 5-hydroxymethylfurfural to boost catalytic performance by simultaneously promoting oxygen activated capacity and the cleavage of O-H/C-H bonds of adsorbed hydroxymethyl groups. Consequently, the Pt/3D-Ce0.9La0.1O2-δ catalyst possessing the highest number of Ptδ+/La-□(-Ce)2 sites showed the best catalytic performance with 99.6% yield to 2,5-furandicarboxylic acid in 10 h. These results offer more insights into the promoting mechanism of interfacial oxygen-defective sites for the liquid-phase aerobic oxidation of aldehydes and alcohols.

3.
J Nucl Med ; 62(10): 1341-1346, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33863824

RESUMO

Inflammation and fibrosis are hallmarks of tissue repair processes and organ failure progression in cardiovascular diseases. Paradigm-shifting research on diverse immune cell populations within the cardiovascular system have enabled discovery of new biomarkers fostering development of diagnostic and therapeutic agents at the molecular level to better manage cardiovascular diseases. To date, a variety of molecular imaging agents have been developed to visualize the biomarkers expressed on immune cells and fibroblasts within their crosstalk network, which drives the pathogenesis of fibrosis triggered by both innate and adaptive immunity. Herein, key biomarkers upregulated in the immune-fibrosis axis are discussed. The promising molecular imaging agents to reveal this critical pathologic process are summarized.


Assuntos
Doenças Cardiovasculares , Imunidade Adaptativa , Animais , Fibrose
4.
Small ; 17(22): e2005686, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33734597

RESUMO

Asymmetric catalysis is of crucial importance owing to the huge and rising demand for optically pure substances. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as two emerging crystalline porous materials, have presented great promising applications for heterogeneous asymmetric catalysis. The unique properties, such as, highly regular porous structures, prominent structural tunability, and well-ordered catalytic sites, render chiral MOFs (CMOFs) and chiral COFs (CCOFs) highly active and enantioselective for a large number of asymmetric catalytic organic transformations. Furthermore, they provide a useful platform for facile mechanistic understanding and catalyst design. This review provides an overview of the advancements in CMOFs and CCOFs for asymmetric catalysis. The designs, syntheses and structures of these crystalline porous materials, and their asymmetric catalytic performance are described. And the perspectives on challenges and opportunities in development of CMOFs and CCOFs are discussed. It is anticipated that this review will shed light on the heterogeneous asymmetric catalysis with CMOFs and CCOFs and motivate further research in this promising field.

5.
ACS Nano ; 15(1): 1186-1198, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33406361

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with dire prognosis due to aggressive biology, lack of effective tools for diagnosis at an early stage, and limited treatment options. Detection of PDAC using conventional radiographic imaging is limited by the dense, hypovascular stromal component and relatively scarce neoplastic cells within the tumor microenvironment (TME). The CC motif chemokine 2 (CCL2) and its cognate receptor CCR2 (CCL2/CCR2) axis are critical in fostering and maintaining this kind of TME by recruiting immunosuppressive myeloid cells such as the tumor-associated macrophages, thereby presenting an opportunity to exploit this axis for both diagnostic and therapeutic purposes. We engineered CCR2-targeting ultrasmall copper nanoparticles (Cu@CuOx) as nanovehicles not only for targeted positron emission tomography imaging by intrinsic radiolabeling with 64Cu but also for loading and delivery of the chemotherapy drug gemcitabine to PDAC. This 64Cu-radiolabeled nanovehicle allowed sensitive and accurate detection of PDAC malignancy in autochthonous genetically engineered mouse models. The ultrasmall Cu@CuOx showed efficient renal clearance, favorable pharmacokinetics, and minimal in vivo toxicity. Systemic administration of gemcitabine-loaded Cu@CuOx effectively suppressed the progression of PDAC tumors in a syngeneic xenograft mouse model and prolonged survival. These CCR2-targeted ultrasmall nanoparticles offer a promising image-guided therapeutic agent and show great potential for translation.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Cobre , Desoxicitidina/análogos & derivados , Camundongos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Receptores CCR2 , Microambiente Tumoral , Gencitabina
6.
Adv Sci (Weinh) ; 7(2): 1901970, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993288

RESUMO

To identify the intrinsic active sites in oxides or oxide supported catalysts is a research frontier in the fields of heterogeneous catalysis and material science. In particular, the role of oxygen vacancies on the redox properties of oxide catalysts is still not fully understood. Herein, some relevant research dealing with M1-O-M2 or M1-□-M2 linkages as active sites in mixed oxides, in oxide supported single-atom catalysts, and at metal/oxide interfaces of oxide supported nanometal catalysts for various reaction systems is reviewed. It is found that the catalytic activity of these oxides not only depends on the amounts of oxygen vacancies and metastable cations but also shows a significant influence from the local environment of the active sites, in particular, the symmetry of the oxygen vacancies. Based on the recent progress in the relevant fields, an "asymmetric oxygen vacancy site" is introduced, which indicates an oxygen vacancy with an asymmetric coordination of cations, making oxygen "easy come, easy go," i.e., more reactive in redox reactions. The establishment of this new mechanism would shed light on the future investigation of the intrinsic active sites in oxide and oxide supported catalysts.

7.
Chemistry ; 26(10): 2285-2292, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31868267

RESUMO

It is known that the low lifetime of photogenerated carriers is the main drawback of elemental photocatalysts. Therefore, a facile and versatile one-step strategy to simultaneously achieve the oxygen covalent functionalization of amorphous red phosphorus (RP) and in situ modification of CdCO3 is reported. This strategy endows RP with enhanced charge carrier separation ability and photocatalytic activity by coupling band-gap engineering and heterojunction construction. The as-prepared nCdCO3 /SO-RP (n=0.1, 0.25, 0.5, 1.0) composites exhibited excellent photocatalytic H2 evolution activity (up to 516.3 µmol g-1 h) from visible-light-driven water splitting (λ>400 nm), which is about 17.6 times higher than that of pristine RP. By experimental and theoretical investigations, the roles of surface oxygen covalent functionalization, that is, prolonging the lifetime of photogenerated carriers and inducing the negative shift of the conduction band potential, were studied in detail. Moreover, the charge transfer mechanism of these composites has also been proposed. In addition, these composites are stable and can be reused at least for three times without significant activity loss. This work may provide a good example of how to promote the activity of elemental photocatalysts by decorating their atomic structure.

8.
J Med Chem ; 62(17): 7961-7975, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408333

RESUMO

A germacrane sesquiterpenoid library containing 30 compounds (2-31) was constructed by structural modification of a major component aristolactone (1) from the traditional Chinese medicine Aristolochia yunnanensis. Compound 11 was identified as a promising anticardiac fibrosis agent by systematic screening of this library. 11 could inhibit the expression of fibronectin (FN), α-smooth muscle actin (α-SMA), and collagens in transforming growth factor ß 1 (TGFß1)-stimulated cardiac fibroblasts at a micromolar level and ameliorate myocardial fibrosis and heart function in abdominal aortic constriction (AAC) rats at 5 mg/kg dose. Mechanistic study revealed that 11 inhibited the TGFß/small mother against decapentaplegic (Smad) signaling pathway by targeting TGFß type I receptor (IC50 = 14.9 ± 1.6 nM). The structure-activity relationships (SARs) study indicated that the unsaturated γ-lactone ring and oxidation of C-1 were important to the activity. These findings may provide a new type of structural motif for future anticardiac fibrosis drug development.


Assuntos
Fibrose/tratamento farmacológico , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Sesquiterpenos de Germacrano/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Constrição , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/metabolismo , Fibrose/patologia , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Sesquiterpenos de Germacrano/química , Sesquiterpenos de Germacrano/isolamento & purificação , Relação Estrutura-Atividade
9.
Phytother Res ; 33(1): 214-223, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375049

RESUMO

Cardiac fibrosis contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. Antifibrotic therapies are likely to be a crucial strategy in curbing many fibrosis-related cardiac diseases. In our previous study, an ethyl acetate extract of a traditional Chinese medicine Aristolochia yunnanensis Franch. was found to have a therapeutic effect on myocardial fibrosis in vitro and in vivo. However, the exact chemicals and their mechanisms responsible for the activity of the crude extract have not been illustrated yet. In the current study, 10 sesquiterpenoids (1-10) were isolated from the active extract, and their antifibrotic effects were systematically evaluated in transforming growth factor ß 1 (TGFß1)-stimulated cardiac fibroblasts and NIH3T3 fibrosis models. (+)-Isobicyclogermacrenal (1) and spathulenol (2) were identified as the main active components, being more potent than the well-known natural antifibrotic agent oxymatrine. Compounds 1 and 2 could inhibit the TGFß1-induced cardiac fibroblasts proliferation and suppress the expression of the fibrosis biomarkers fibronectin and α-smooth muscle actin via down-regulation of their mRNA levels. The mechanism study revealed that 1 and 2 could inhibit the phosphorylation of TGFß type I receptor, leading to the decrease of the phosphorylation levels of downstream Smad2/3, then consequently blocking the nuclear translocation of Smad2/3 in the TGFß/Smad signaling pathway. These findings suggest that 1 and 2 may serve as promising natural leads for the development of anticardiac fibrosis drugs.


Assuntos
Aldeídos/uso terapêutico , Aristolochia/química , Fibrose/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Sesquiterpenos/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Aldeídos/farmacologia , Animais , Fibrose/patologia , Humanos , Masculino , Camundongos , Mães , Ratos Sprague-Dawley , Sesquiterpenos/farmacologia , Transdução de Sinais
10.
J Nat Prod ; 81(6): 1483-1487, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29847131

RESUMO

Two polyprenylated acylcyclopentanone racemates, evodialones A (1) and B (2), featuring a 3-ethyl-1,1-diisopentyl-4-methylcyclopentane skeleton, were isolated from an extract of the aerial parts of Evodia lepta. Evodialone A (1) was resolved by chiral-phase HPLC to afford a pair of enantiomers, (+)- and (-)-evodialones A (1b/1a), while evodialone B (2) could not be resolved. Their structures were elucidated by spectroscopic analysis and a combination of computational techniques including gauge-independent atomic orbital calculation of 1D NMR data and experimental and TDDFT-calculated ECD spectra. A putative biosynthetic pathway of 1 and 2 starting from the monocyclic polyprenylated acylphloroglucinols is proposed. All the isolates were screened for the antimicrobial activity in vitro, and 1a and 1b showed moderate inhibitory activities against several pathogenic fungi with MICs values of 17.1-68.3 µM.


Assuntos
Ciclopentanos/química , Evodia/química , Rutaceae/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Ciclopentanos/farmacologia , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética/métodos , Floroglucinol/química , Floroglucinol/farmacologia
11.
Eur J Med Chem ; 144: 758-766, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29291443

RESUMO

The bioassay-guided phytochemical study of a traditional Chinese medicine Morus alba led to the isolation of 18 prenylated flavonoids (1-18), of which (±)-cyclomorusin (1/2), a pair of enantiomers, and 14-methoxy-dihydromorusin (3) are the new ones. Subsequent structural modification of the selected components by methylation, esterification, hydrogenation, and oxidative cyclization led to 14 more derivatives (19-32). The small library was screened for its inhibition against phosphodiesterase-4 (PDE4), which is a drug target for the treatment of asthma and chronic obstructive pulmonary disease (COPD). Among them, nine compounds (1-5, 8, 10, 16, and 17) exhibited remarkable activities with IC50 values ranging from 0.0054 to 0.40 µM, being more active than the positive control rolipram (IC50 = 0.62 µM). (+)-Cyclomorusin (1), the most active natural PDE4 inhibitor reported so far, also showed a high selectivity across other PDE members with the selective fold greater than 55. The SAR study revealed that the presence of prenyls at C-3 and/or C-8, 2H-pyran ring D, and the phenolic hydroxyl groups were important to the activity, which was further supported by the recognition mechanism study of the inhibitors with PDE4 by using molecular modeling.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Flavonoides/farmacologia , Morus/química , Inibidores da Fosfodiesterase 4/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/isolamento & purificação , Relação Estrutura-Atividade
12.
J Med Chem ; 60(17): 7300-7314, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28792756

RESUMO

Two series of structurally related organoselenium compounds designed by fusing the anticancer agent methyl(phenyl)selane into the tubulin polymerization inhibitors isocombretastatins or phenstatins were synthesized and evaluated for antiproliferative activity. Most of these selenium containing hybrids exhibited potent cytotoxicity against a panel of cancel cell lines, with IC50 values in the submicromolar concentration range. Among them, 11a, the 3-methylseleno derivative of isocombretastatin A-4 (isoCA-4) represented the most active compound with IC50 values of 2-34 nM against 12 cancer cell lines, including two drug-resistant cell lines. Importantly, its phosphate salt, 11ab, inhibited tumor growth in xenograft mice models with inhibitory rate of 72.9% without apparent toxicity, which was better than the reference compounds isoCA-4P (inhibitory rate 52.2%) and CA-4P (inhibitory rate 47.6%). Mechanistic studies revealed that 11a is a potent tubulin polymerization inhibitor, which could arrest cell cycle at G2/M phase and induce apoptosis along with the decrease of mitochondrial membrane potential. In summary, 11a could serve as a promising lead for the development of highly efficient anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Selênio/química , Selênio/farmacologia , Estilbenos/química , Estilbenos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fase G2/efeitos dos fármacos , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ratos Sprague-Dawley , Selênio/uso terapêutico , Estilbenos/uso terapêutico
13.
Biochem Pharmacol ; 137: 29-50, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28476333

RESUMO

The proteasomal 19S regulatory particle (RP) associated deubiquitinases (DUBs) have attracted much attention owing to their potential as a therapeutic target for cancer therapy. Identification of new entities against 19S RP associated DUBs and illustration of the underlying mechanisms is crucial for discovery of novel proteasome blockers. In this study, a series of 4-arylidene curcumin analogues were identified as potent proteasome inhibitor by preferentially blocking deubiquitinase function of proteasomal 19S RP with moderate 20S CP inhibition. The most active compound 33 exhibited a major inhibitory effect on 19S RP-associated ubiquitin-specific proteases 14, along with a minor effect on ubiquitin C-terminal hydrolase 5, which resulted in dysfunction of proteasome, and subsequently accumulated ubiquitinated proteins (such as IκB) in several cancer cells. Remarkably, though both 19S RP and 20S CP inhibition induced significantly endoplasmic reticulum stress and triggered caspase-12/9 pathway activation to promote cancer cell apoptosis, the 19S RP inhibition by 33 avoided slow onset time, Bcl-2 overexpression, and PERK-phosphorylation, which contribute to the deficiencies of clinical drug Bortezomib. These systematic studies provided insights in the development of novel proteasome inhibitors for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma/farmacologia , Células A549 , Animais , Antineoplásicos/química , Células CHO , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Cricetinae , Cricetulus , Enzimas Desubiquitinantes/metabolismo , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos/métodos , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química
14.
Mar Drugs ; 15(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333090

RESUMO

Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C-G (3-7), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans. Their structures were determined by spectroscopic and chemical methods, and those of 1, 4, 5, and 6 were confirmed by single crystal X-ray diffraction. Compounds 1 and 2 represent the first example of biscembranoids featuring a trans-fused A/B-ring conjunction between the two cembranoid units. Their unique structures may shed light on an unusual biosynthetic pathway involving a cembranoid-∆8 rather than the normal cembranoid-∆¹ unit in the endo-Diels-Alder cycloaddition. Compounds 2 and 3 exhibited potential inhibitory effects on nitric oxide production in RAW 264.7 macrophages, with IC50 values being at 18.2 and 32.5 µM, respectively.


Assuntos
Antozoários/química , Diterpenos/química , Diterpenos/farmacologia , Animais , Vias Biossintéticas/fisiologia , Linhagem Celular , Cristalografia por Raios X/métodos , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Difração de Raios X/métodos
15.
Acta Pharmacol Sin ; 38(5): 638-650, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28239158

RESUMO

We previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study. C57BL/6J mice were infused with Ang II and treated with 6014 (10, 30, 90 mg·kg-1·d-1, ig) for 4 weeks. Then two-dimensional echocardiography was performed to assess the cardiac function and structure. Histological changes of the hearts were examined with HE staining and Masson's trichrome staining. The protein expression was evaluated by Western blot, immunohistochemistry and immunofluorescence assays. The activities of sirtuin-1 (SIRT-1) and the content of NAD+ were detected with the corresponding test kits. Treatment with 6014 dose-dependently improved cardiac function, including LVEF, CO and SV and reversed the changes of cardiac structure in Ang II-infused mice: it significantly ameliorated Ang II-induced cardiac hypertrophy evidenced by attenuating the enlargement of cardiomyocytes, decreased HW/BW and LVW/BW, and decreased expression of hypertrophic markers ANF, BNP and ß-MHC; it also prevented Ang II-induced cardiac fibrosis, as implied by the decrease in excess accumulation of extracellular matrix (ECM) components collagen I, collagen III and FN. Further studies revealed that treatment with 6014 did not affect the expression levels of PARP-1, but dose-dependently inhibited the activity of PARP-1 and subsequently restored the activity of SIRT-1 in heart tissues due to the decreased consumption of NAD+ and attenuated Poly-ADP-ribosylation (PARylation) of SIRT-1. In conclusion, the novel PARP-1 inhibitor 6014 effectively protects mice against AngII-induced cardiac remodeling and improves cardiac function. Thus, 6014 might be a potential therapeutic agent for heart diseases..


Assuntos
Cardiomegalia/terapia , Cardiotônicos/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Tioglicolatos/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Xantinas/uso terapêutico , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Cardiotônicos/síntese química , Fibrose/induzido quimicamente , Fibrose/terapia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Sirtuína 1/metabolismo , Tioglicolatos/síntese química , Xantinas/síntese química
16.
J Nat Prod ; 79(11): 2941-2952, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27933898

RESUMO

Eleven fumiquinazoline-type alkaloids, namely, versiquinazolines A-K (1-11), along with cottoquinazolines B-D, were isolated from the gorgonian-derived fungus Aspergillus versicolor LZD-14-1. Their structures were determined by extensive analyses of the spectroscopic data (1D and 2D NMR, HRESIMS), in addition to the experimental and calculated ECD data and X-ray single-crystal diffraction analysis for the assignments of the absolute configurations. Versiquinazolines A, B, and F (1, 2, and 6), bearing a methanediamine or an aminomethanol unit and representing a unique subtype of fumiquinazolines, were found from nature for the first time. Possible biogenetic relationships of the versiquinazolines are postulated. In addition, the structures of cottoquinazolines B (12), D (13), and C (14) should be revised to the enantiomers. Compounds 1, 2, 7, and 11 exhibited inhibitory activities against thioredoxin reductase (IC50 values ranging from 12 to 20 µM).


Assuntos
Alcaloides/isolamento & purificação , Aspergillus/química , Quinazolinas/isolamento & purificação , Alcaloides/química , Alcaloides/farmacologia , Cristalografia por Raios X , Conformação Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Quinazolinas/química , Quinazolinas/farmacologia , Estereoisomerismo , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores
17.
Fitoterapia ; 115: 24-30, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27687904

RESUMO

Five new lanostane-type triterpenoids, ganoderenses A-E (1-5), two new lanostane nor-triterpenoids, ganoderenses F and G (6 and 7), along with 13 known analogues (8-20) were isolated from the fruiting body of Ganoderma hainanense. Their structures were determined by combined chemical and spectral methods, and the absolute configurations of compounds 1 and 13 were confirmed by single crystal X-ray diffraction. All compounds were evaluated for inhibitory activity against thioredoxin reductase (TrxR), a potential target for cancer chemotherapy with redox balance and antioxidant functions, but were inactive.


Assuntos
Ganoderma/química , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Triterpenos/química , Cristalografia por Raios X , Carpóforos/química , Estrutura Molecular , Triterpenos/isolamento & purificação
18.
J Med Chem ; 59(13): 6353-69, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27328029

RESUMO

The phytochemical study of Pedilanthus tithymaloides led to the isolation of 13 jatrophane diterpenoids (1-13), of which eight (1-8) are new. Subsequent structural modification of the major components by esterification, hydrolysis, hydrogenation, or epoxidation yielded 22 new derivatives (14-35). Thus, a jatrophane library containing two series of compounds was established to screen for P-glycoprotein (Pgp)-dependent MDR modulators. The activity was evaluated through a combination of Rho123 efflux and chemoreversal assays on adriamycin resistant human hepatocellular carcinoma cell line HepG2 (HepG2/ADR) and adriamycin resistant human breast adenocarcinoma cell line MCF-7 (MCF-7/ADR). Compounds 19, 25, and 26 were identified as potent MDR modulators with greater chemoreversal ability and less cytotoxicity than the third-generation drug tariquidar. The structure-activity relationship (SAR) was discussed, which showed that modifications beyond just increasing the lipophilicity of this class of Pgp inhibitors are beneficial to the activity. Compound 26, which exhibited a remarkable metabolic stability in vitro and a favorable antitumor effect in vivo, would serve as a promising lead for the development of new MDR reversal agents.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Descoberta de Drogas , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Euphorbia/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Diterpenos/química , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
19.
Environ Technol ; 36(5-8): 1008-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25323028

RESUMO

The polycyclic aromatic hydrocarbons (PAHs) in crumb tyre rubber were firstly degraded under UV irradiation in the presence of rutile TiO2 and hydrogen peroxide. The effects of light intensity, catalyst amount, oxidant amount, initial pH value, co-solvent content, and reaction time on degradation efficiency of typical PAHs in crumb tyre rubber were studied. The results indicated that UV irradiation, rutile TiO2, and hydrogen peroxide were beneficial to the degradation of PAHs and co-solvent could accelerate the desorption of PAHs from crumb tyre rubber. Up to 90% degradation efficiency of total 16 PAHs could be obtained in the presence of rutile TiO2 (1 wt%) and hydrogen peroxide (1.0 mL) under 1800 µW cm(-2) UV irradiation for 48 h. The high molecular weight PAHs (such as benz(a)pyrene) were more difficult to be degraded than low molecular weight PAHs (such as phenanthrene, chrysene). Moreover, through the characterization of reaction solution and degradation products via GC-MS, it was proved that the PAHs in crumb tyre rubber were successfully degraded.


Assuntos
Fotólise , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/efeitos da radiação , Borracha , Titânio , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...