Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Plant Sci ; 28(1): 31-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36114125

RESUMO

Interactions among plants have been long recognized as a major force driving plant community dynamics and crop yield. Surprisingly, our knowledge of the ecological genetics associated with variation of plant-plant interactions remains limited. In this opinion article by scientists from complementary disciplines, the international PLANTCOM network identified four timely questions to foster a better understanding of the mechanisms mediating plant assemblages. We propose that by identifying the key relationships among phenotypic traits involved in plant-plant interactions and the underlying adaptive genetic and molecular pathways, while considering environmental fluctuations at diverse spatial and time scales, we can improve predictions of genotype-by-genotype-by-environment interactions and modeling of productive and stable plant assemblages in wild habitats and crop fields.


Assuntos
Ecossistema , Plantas , Genótipo , Fenótipo , Plantas/genética
2.
Front Plant Sci ; 12: 747142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003151

RESUMO

Functional-structural plant models (FSPMs) have been evolving for over 2 decades and their future development, to some extent, depends on the value of potential applications in crop science. To date, stabilizing crop production by identifying valuable traits for novel cultivars adapted to adverse environments is topical in crop science. Thus, this study will examine how FSPMs are able to address new challenges in crop science for sustainable crop production. FSPMs developed to simulate organogenesis, morphogenesis, and physiological activities under various environments and are amenable to downscale to the tissue, cellular, and molecular level or upscale to the whole plant and ecological level. In a modeling framework with independent and interactive modules, advanced algorithms provide morphophysiological details at various scales. FSPMs are shown to be able to: (i) provide crop ideotypes efficiently for optimizing the resource distribution and use for greater productivity and less disease risk, (ii) guide molecular design breeding via linking molecular basis to plant phenotypes as well as enrich crop models with an additional architectural dimension to assist breeding, and (iii) interact with plant phenotyping for molecular breeding in embracing three-dimensional (3D) architectural traits. This study illustrates that FSPMs have great prospects in speeding up precision breeding for specific environments due to the capacity for guiding and integrating ideotypes, phenotyping, molecular design, and linking molecular basis to target phenotypes. Consequently, the promising great applications of FSPMs in crop science will, in turn, accelerate their evolution and vice versa.

3.
Ann Bot ; 126(4): 501-509, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32725187

RESUMO

BACKGROUND: Functional-structural plant models (FSPMs) explore and integrate relationships between a plant's structure and processes that underlie its growth and development. In the last 20 years, scientists interested in functional-structural plant modelling have expanded greatly the range of topics covered and now handle dynamical models of growth and development occurring from the microscopic scale, and involving cell division in plant meristems, to the macroscopic scales of whole plants and plant communities. SCOPE: The FSPM approach occupies a central position in plant science; it is at the crossroads of fundamental questions in systems biology and predictive ecology. This special issue of Annals of Botany features selected papers on critical areas covered by FSPMs and examples of comprehensive models that are used to solve theoretical and applied questions, ranging from developmental biology to plant phenotyping and management of plants for agronomic purposes. Altogether, they offer an opportunity to assess the progress, gaps and bottlenecks along the research path originally foreseen for FSPMs two decades ago. This review also allows discussion of current challenges of FSPMs regarding (1) integration of multidisciplinary knowledge, (2) methods for handling complex models, (3) standards to achieve interoperability and greater genericity and (4) understanding of plant functioning across scales. CONCLUSIONS: This approach has demonstrated considerable progress, but has yet to reach its full potential in terms of integration and heuristic knowledge production. The research agenda of functional-structural plant modellers in the coming years should place a greater emphasis on explaining robust emergent patterns, and on the causes of possible deviation from it. Modelling such patterns could indeed fuel both generic integration across scales and transdisciplinary transfer. In particular, it could be beneficial to emergent fields of research such as model-assisted phenotyping and predictive ecology in managed ecosystems.


Assuntos
Ecossistema , Biologia de Sistemas , Ecologia , Modelos Biológicos , Plantas
4.
Ann Bot ; 126(4): 671-685, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32004372

RESUMO

BACKGROUNDS AND AIMS: A major challenge when supporting the development of intercropping systems remains the design of efficient species mixtures. The ecological processes that sustain overyielding of legume-based mixtures compared to pure crops are well known, but their links to plant traits remain to be unravelled. A common assumption is that enhancing trait divergence among species for resource acquisition when assembling plant mixtures should increase species complementarity and improve community performance. METHODS: The Virtual Grassland model was used to assess how divergence in trait values between species on four physiological functions (namely light and mineral N acquisition, temporal development, and C-N use efficiency) affected overyielding and mixture stability in legume-based binary mixtures. A first step allowed us to identify the model parameters that were most important to interspecies competition. A second step involved testing the impact of convergent and divergent parameter (or trait) values between species on virtual mixture performance. RESULTS: Maximal overyielding was achieved in cases where trait values were divergent for the physiological functions controlling N acquisition and temporal development but convergent for light interception. It was also found that trait divergence should not affect competitive abilities of legume and non-legumes at random. Indeed, random trait combinations frequently led to reduced mixture yields when compared to a perfectly convergent neutral model. Combinations with the highest overyielding also tended to be associated with mixture instability and decreasing legume biomass proportion. Achieving both high overyielding and mixture stability was only found to be possible under low or moderate N levels, using combinations of traits adapted to each environment. CONCLUSIONS: No simple assembly rule based on trait divergence could be confirmed. Plant models able to infer plant-plant interactions can be helpful for the identification of major interaction traits and the definition of ideotypes adapted to a targeted intercropping system.


Assuntos
Fabaceae/genética , Biodiversidade , Biomassa , Fenótipo
5.
Ann Bot ; 126(4): 647-660, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837221

RESUMO

BACKGROUND AND AIMS: Scaling from single-leaf to whole-canopy photosynthesis faces several complexities related to variations in light interception and leaf properties. To evaluate the impact of canopy strucuture on gas exchange, we developed a functional-structural plant model to upscale leaf processes to the whole canopy based on leaf N content. The model integrates different models that calculate intercepted radiation, leaf traits and gas exchange for each leaf in the canopy. Our main objectives were (1) to introduce the gas exchange model developed at the plant level by integrating the leaf-level responses related to canopy structure, (2) to test the model against an independent canopy gas exchange dataset recorded on different plant architectures, and (3) to quantify the impact of intra-canopy N distribution on crop photosynthesis. METHODS: The model combined a 3D reconstruction of grapevine (Vitis vinifera) canopy architecture, a light interception model, and a coupled photosynthesis and stomatal conductance model that considers light-driven variations in N distribution. A portable chamber device was constructed to measure whole-plant gas exchange to validate the model outputs with data collected on different training systems. Finally, a sensitivity analysis was performed to evaluate the impact on C assimilation of different N content distributions within the canopy. KEY RESULTS: By considering a non-uniform leaf N distribution within the canopy, our model accurately reproduced the daily pattern of gas exchange of different canopy architectures. The gain in photosynthesis permitted by the non-uniform compared with a theoretical uniform N distribution was about 18 %, thereby contributing to the maximization of C assimilation. By contrast, considering a maximal N content for all leaves in the canopy overestimated net CO2 exchange by 28 % when compared with the non-uniform distribution. CONCLUSIONS: The model reproduced the gas exchange of plants under different training systems with a low error (10 %). It appears to be a reliable tool to evaluate the impact of a grapevine training system on water use efficiency at the plant level.


Assuntos
Vitis , Fotossíntese , Folhas de Planta , Água
6.
J Exp Bot ; 70(9): 2491-2504, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30219923

RESUMO

Functional-structural plant models are increasingly being used to analyse relationships between plant functioning and the topological and spatial organisation of their modular structure. In this study, the performance of an individual-based model accounting for the the architecture and population dynamics of forage legumes in multi-species grasslands was assessed. Morphogenetic shoot and root parameters were calibrated for seven widely used species. Other model parameters concerning C and N metabolism were obtained from the literature. The model was evaluated using a series of independent experiments combining the seven species in binary mixtures that were subject to regular defoliation. For all the species, the model could accurately simulate phytomer demography, leaf area dynamics, and root growth under conditions of weak competition. In addition, the plastic changes induced by competition for light and N in terms of plant development, leaf area, N uptake, and total plant biomass were correctly predicted. The different species displayed contrasting sensitivities to defoliation, and the model was able to predict the superior ability of creeping species to sustain regular defoliation. As a result of competition and management, the balance between species changed over time and was strongly dependent on the pair of species used. The model proved able to capture these differences in community dynamics. Overall, the results demonstrate that integrating the individual components of population dynamics in a process-based model can provide good predictive capacity regarding mixtures of cultivated species.


Assuntos
Pradaria , Nitrogênio/metabolismo , Biodiversidade , Fabaceae/metabolismo , Desenvolvimento Vegetal/fisiologia , Dinâmica Populacional
7.
Ann Bot ; 121(5): 875-896, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29300872

RESUMO

Background and Aims: Individual-based models (IBMs) are promising tools to disentangle plant interactions in multi-species grasslands and foster innovative species mixtures. This study describes an IBM dealing with the morphogenesis, growth and C-N acquisition of forage legumes that integrates plastic responses from functional-structural plant models. Methods: A generic model was developed to account for herbaceous legume species with contrasting above- and below-ground morphogenetic syndromes and to integrate the responses of plants to light, water and N. Through coupling with a radiative transfer model and a three-dimensional virtual soil, the model allows dynamic resolution of competition for multiple resources at individual plant level within a plant community. The behaviour of the model was assessed on a range of monospecific stands grown along gradients of light, water and N availability. Key Results: The model proved able to capture the diversity of morphologies encountered among the forage legumes. The main density-dependent features known about even-age plant populations were correctly anticipated. The model predicted (1) the 'reciprocal yield' law relating average plant mass to density, (2) a self-thinning pattern close to that measured for herbaceous species and (3) consistent changes in the size structure of plant populations with time and pedo-climatic conditions. In addition, plastic changes in the partitioning of dry matter, the N acquisition mode and in the architecture of shoots and roots emerged from the integration of plant responses to their local environment. This resulted in taller plants and thinner roots when competition was dominated by light, and shorter plants with relatively more developed root systems when competition was dominated by soil resources. Conclusions: A population dynamic model considering growth and morphogenesis responses to multiple resources heterogeneously distributed in the environment was presented. It should allow scaling plant-plant interactions from individual to community levels without the inconvenience of average plant models.


Assuntos
Carbono/metabolismo , Fabaceae/crescimento & desenvolvimento , Modelos Genéticos , Nitrogênio/metabolismo , Água/metabolismo , Meio Ambiente , Fabaceae/metabolismo , Pradaria , Fixação de Nitrogênio , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Dinâmica Populacional , Solo/química
8.
Front Plant Sci ; 8: 405, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396676

RESUMO

A great variety of legume species are used for forage production and grown in multi-species grasslands. Despite their close phylogenetic relationship, they display a broad range of morphologies that markedly affect their competitive abilities and persistence in mixtures. Little is yet known about the component traits that control the deployment of plant architecture in most of these species. During the present study, we compared the patterns of shoot organogenesis and shoot organ growth in contrasting forage species belonging to the four morphogenetic groups previously identified in herbaceous legumes (i.e., stolon-formers, rhizome-formers, crown-formers tolerant to defoliation and crown-formers intolerant to defoliation). To achieve this, three greenhouse experiments were carried out using plant species from each group (namely alfalfa, birdsfoot trefoil, sainfoin, kura clover, red clover, and white clover) which were grown at low density under non-limiting water and soil nutrient availability. The potential morphogenesis of shoots characterized under these conditions showed that all the species shared a number of common morphogenetic features. All complied with a generalized classification of shoot axes into three types (main axis, primary and secondary axes). A common quantitative framework for vegetative growth and development involved: (i) the regular development of all shoot axes in thermal time and a deterministic branching pattern in the absence of stress; (ii) a temporal coordination of organ growth at the phytomer level that was highly conserved irrespective of phytomer position, and (iii) an identical allometry determining the surface area of all the leaves. The species differed in their architecture as a consequence of the values taken by component traits of morphogenesis. Assessing the relationships between the traits studied showed that these species were distinct from each other along two main PCA axes which explained 68% of total variance: the first axis captured a trade-off between maximum leaf size and the ability to produce numerous phytomers, while the second distinguished morphogenetic strategies reliant on either petiole or internode expansion to achieve space colonization. The consequences of this quantitative framework are discussed, along with its possible applications regarding plant phenotyping and modeling.

9.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27178065

RESUMO

Interest in the thermal acclimation of photosynthesis has been stimulated by the increasing relevance of climate change. However, little is known about intra-specific variations in thermal acclimation and its potential for breeding. In this article, we examined the difference in thermal acclimation between alfalfa (Medicago sativa) cultivars originating from contrasting origins, and sought to analyze the mechanisms in play. A series of experiments was carried out at seven growth temperatures between 5 and 35 °C using four cultivars from temperate and Mediterranean origin. Leaf traits, the photosynthetic rate at 25 °C (A400 (25)), the photosynthetic rate at optimal temperature (A400 (opt)), the thermal optimum of photosynthesis (Topt), and the photosynthetic parameters from the Farqhuar model were determined. Irrespective of cultivar origin, a clear shift in the temperature responses of photosynthesis was observed as a function of growth temperature, affecting thermal optimum of photosynthesis, photosynthetic rate at optimal temperature and photosynthetic rate at 25 °C. For both cultivars, Topt values increased linearly in leaves grown between 5 and 35 °C. Relative homeostasis of A400 (25) and A400 (opt) was found between 10 °C and 30 °C growth temperatures, but sharp declines were recorded at 5 and 35 °C. This homeostasis was achieved in part through modifications to leaf nitrogen content, which increased at extreme temperatures. Significant changes were also recorded regarding nitrogen partitioning in the photosynthetic apparatus and in the temperature dependence of photosynthetic parameters. The cultivars differed only in terms of the temperature response of photosynthetic parameters, with Mediterranean genotypes displaying a greater sensitivity of the maximum rate of Rubisco carboxylation to elevated temperatures. It was concluded that intra-specific variations in the temperature acclimation of photosynthesis exist among alfalfa cultivars, but that Mediterranean genotypes presented no evidence of superior performance at high temperatures.

10.
AoB Plants ; 72015 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-26433705

RESUMO

Modelling the spatial and temporal distribution of leaf nitrogen (N) is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend on both local light availability and whole-plant N status. The interaction between these two levels of integration has generally been modelled by assuming optimal canopy functioning, which is not supported by experiments. During this study, we examined how a set of empirical relationships with measurable parameters could be used instead to predict photosynthesis at the leaf and whole-canopy levels. The distribution of leaf N per unit area (Na) within the canopy was related to leaf light irradiance and to the nitrogen nutrition index (NNI), a whole-plant variable accounting for plant N status. Na was then used to determine the photosynthetic parameters of a leaf gas exchange model. The model was assessed on alfalfa canopies under contrasting N nutrition and with N2-fixing and non-fixing plants. Three experiments were carried out to parameterize the relationships between Na, leaf irradiance, NNI and photosynthetic parameters. An additional independent data set was used for model evaluation. The N distribution model showed that it was able to predict leaf N on the set of leaves tested. The Na at the top of the canopy appeared to be related linearly to the NNI, whereas the coefficient accounting for N allocation remained constant. Photosynthetic parameters were related linearly to Na irrespective of N nutrition and the N acquisition mode. Daily patterns of gas exchange were simulated accurately at the leaf scale. When integrated at the whole-canopy scale, the model predicted that raising N availability above an NNI of 1 did not result in increased net photosynthesis. Overall, the model proposed offered a solution for a dynamic coupling of leaf photosynthesis and canopy N distribution without requiring any optimal functioning hypothesis.

11.
Ann Bot ; 113(1): 145-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24201140

RESUMO

BACKGROUND AND AIMS: The growth of crops in a mixture is more variable and difficult to predict than that in pure stands. Light partitioning and crop leaf area expansion play prominent roles in explaining this variability. However, in many crops commonly grown in mixtures, including the forage species alfalfa, the sensitivity and relative importance of the physiological responses involved in the light modulation of leaf area expansion are still to be established. This study was designed to assess the relative sensitivity of primary shoot development, branching and individual leaf expansion in alfalfa in response to light availability. METHODS: Two experiments were carried out. The first studied isolated plants to assess the potential development of different shoot types and growth periods. The second consisted of manipulating the intensity of competition for light using a range of canopies in pure and mixed stands at two densities so as to evaluate the relative effects on shoot development, leaf growth, and plant and shoot demography. KEY RESULTS: Shoot development in the absence of light competition was deterministic (constant phyllochrons of 32·5 °Cd and 48·2 °Cd for primary axes and branches, branching probability of 1, constant delay of 1·75 phyllochron before axillary bud burst) and identical irrespective of shoot type and growth/regrowth periods. During light competition experiments, changes in plant development explained most of the plant leaf area variations, with average leaf size contributing to a lesser extent. Branch development and the number of shoots per plant were the leaf area components most affected by light availability. Primary axis development and plant demography were only affected in situations of severe light competition. CONCLUSIONS: Plant leaf area components differed with regard to their sensitivity to light competition. The potential shoot development model presented in this study could serve as a framework to integrate light responses in alfalfa crop models.


Assuntos
Medicago sativa/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Luz , Medicago sativa/fisiologia , Modelos Biológicos , Brotos de Planta/fisiologia
12.
Plant Cell Environ ; 35(7): 1313-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22329397

RESUMO

Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season.


Assuntos
Aclimatação , Modelos Biológicos , Nitrogênio/análise , Folhas de Planta/efeitos da radiação , Vitis/efeitos da radiação , Fotossíntese , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal
13.
Ann Bot ; 108(6): 1013-24, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21865218

RESUMO

BACKGROUND AND AIMS: Most studies dealing with light partitioning in intercropping systems have used statistical models based on the turbid medium approach, thus assuming homogeneous canopies. However, these models could not be directly validated although spatial heterogeneities could arise in such canopies. The aim of the present study was to assess the ability of the turbid medium approach to accurately estimate light partitioning within grass-legume mixed canopies. METHODS: Three contrasted mixtures of wheat-pea, tall fescue-alfalfa and tall fescue-clover were sown according to various patterns and densities. Three-dimensional plant mock-ups were derived from magnetic digitizations carried out at different stages of development. The benchmarks for light interception efficiency (LIE) estimates were provided by the combination of a light projective model and plant mock-ups, which also provided the inputs of a turbid medium model (SIRASCA), i.e. leaf area index and inclination. SIRASCA was set to gradually account for vertical heterogeneity of the foliage, i.e. the canopy was described as one, two or ten horizontal layers of leaves. KEY RESULTS: Mixtures exhibited various and heterogeneous profiles of foliar distribution, leaf inclination and component species height. Nevertheless, most of the LIE was satisfactorily predicted by SIRASCA. Biased estimations were, however, observed for (1) grass species and (2) tall fescue-alfalfa mixtures grown at high density. Most of the discrepancies were due to vertical heterogeneities and were corrected by increasing the vertical description of canopies although, in practice, this would require time-consuming measurements. CONCLUSIONS: The turbid medium analogy could be successfully used in a wide range of canopies. However, a more detailed description of the canopy is required for mixtures exhibiting vertical stratifications and inter-/intra-species foliage overlapping. Architectural models remain a relevant tool for studying light partitioning in intercropping systems that exhibit strong vertical heterogeneities. Moreover, these models offer the possibility to integrate the effects of microclimate variations on plant growth.


Assuntos
Fabaceae/fisiologia , Luz , Modelos Biológicos , Poaceae/fisiologia , Software , Fabaceae/crescimento & desenvolvimento , Fabaceae/efeitos da radiação , Imageamento Tridimensional , Modelos Estatísticos , Nefelometria e Turbidimetria , Fenômenos Ópticos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Poaceae/crescimento & desenvolvimento , Poaceae/efeitos da radiação , Rhizobium leguminosarum/crescimento & desenvolvimento
14.
New Phytol ; 187(1): 106-118, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20456066

RESUMO

*In this study, we examined the impact of transient chilling in maize (Zea mays). We investigated the respective roles of the direct effects of stressing temperatures and indirect whorl size-mediated effects on the growth of leaves chilled at various stages of development. *Cell production, individual leaf extension and final leaf size of plants grown in a glasshouse under three temperature regimes (a control and two short chilling transfers) were studied using two genotypes contrasting in terms of their architecture. *The kinetics of all the leaves emerging after the stress were affected, but not all final leaf lengths were affected. No size-mediated propagation of an initial growth reduction was observed, but a size-mediated effect was associated with a longer duration of leaf elongation which compensated for reduced leaf elongation rates when leaves were stressed during their early growth. Both cell division and cell expansion contributed to explaining cold-induced responses at the leaf level. *These results demonstrate that leaf elongation kinetics and final leaf length are under the control of processes at the n - 1 (cell proliferation and expansion) and n + 1 (whorl size signal) scales. Both levels may respond to chilling stress with different time lags, making it possible to buffer short-term responses.


Assuntos
Temperatura Baixa , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Estresse Fisiológico , Zea mays/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Contagem de Células , Tamanho Celular , Cinética , Modelos Biológicos , Tamanho do Órgão , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Fatores de Tempo , Zea mays/citologia
15.
Physiol Plant ; 134(1): 49-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18399930

RESUMO

The effect of trophic competition between vegetative sources and reproductive sinks on grapevine (Vitis vinifera L.) shoot development was analyzed. Two international cultivars (Grenache N and Syrah) grown in pots, which were well watered, were studied. A large range of trophic competition levels was obtained by modifying the cluster loads per plant. An analytical breakdown of the branching system was used to analyze the effects of trophic competition. Phytomer production on the primary axis and the probability and timing of axillary budburst were not affected by trophic competition. However, the duration of development and leaf production rate for secondary axes were both significantly affected. The impact of trophic competition differed within the P0-P1-P2 architectural module, locally within the shoot and between cultivars. Trophic competition reduced the organogenesis of secondary axes most strongly close to clusters, on P1-P2 phytomers and in Grenache N. Based on these results, a modeling approach simulating sink strength variation and the local effects of sink proximity would be more relevant than a model considering only development as a function of thermal time or the global distribution of available biomass.


Assuntos
Brotos de Planta/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento , Modelos Biológicos , Brotos de Planta/anatomia & histologia , Vitis/anatomia & histologia
16.
Ann Bot ; 101(8): 1195-206, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18199575

RESUMO

BACKGROUND AND AIMS: Plant growth models able to simulate phenotypic plasticity are increasingly required because (1) they should enable better predictions of the observed variations in crop production, yield and quality, and (2) their parameters are expected to have a more robust genetic basis, with possible implications for selection of quantitative traits such as growth- and allocation-related processes. The structure-function plant model, GREENLAB, simulates resource-dependent plasticity of plant architecture. Evidence for its generality has been previously reported, but always for plants grown in a limited range of environments. This paper aims to test the model concept to its limits by using plant spacing as a means to generate a gradient of competition for light, and by using a new crop species, tomato, known to exhibit a strong photomorphogenetic response. METHODS: A greenhouse experiment was carried out with three homogeneous planting densities (plant spacing = 0.3, 0.6 and 1 m). Detailed records of plant development, plant architecture and organ growth were made throughout the growing period. Model calibration was performed for each situation using a statistical optimization procedure (multi-fitting). KEY RESULTS AND CONCLUSIONS: Obvious limitations of the present version of the model appeared to account fully for the plant plasticity induced by inter-plant competition for light. A lack of stability was identified for some model parameters at very high planting density. In particular, those parameters characterizing organ sink strengths and governing light interception proved to be environment-dependent. Remarkably, however, responses of the parameter values concerned were consistent with actual growth measurements and with previously reported results. Furthermore, modifications of total biomass production and of allocation patterns induced by the planting-density treatments were accurately simulated using the sets of optimized parameters. These results demonstrate that the overall model structure is potentially able to reproduce the observed plant plasticity and suggest that sound biologically based adaptations could overcome the present model limitations. Potential options for model improvement are proposed, and the possibility of using the kernel algorithm currently available as a fitting tool to build up more sophisticated model versions is advocated.


Assuntos
Modelos Teóricos , Solanum lycopersicum/crescimento & desenvolvimento , Simulação por Computador , Ecossistema , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/fisiologia
17.
Ann Bot ; 101(8): 1167-84, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18202006

RESUMO

BACKGROUND AND AIMS: In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar-training system (C x T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods. MODEL: This model is original in combining a turbid-medium-like envelope enclosing the volume occupied by vine shoots with the use of discrete geometric polygons representing leaves randomly located within this volume to represent plant structure. Reconstruction rules were adapted to capture the main determinants of grapevine shoot architecture and their variability. Using a simplified set of parameters, it was possible to describe (1) the 3D path of the main shoot, (2) the volume occupied by the foliage around this path and (3) the orientation of individual leaf surfaces. Model parameterization (estimation of the probability distribution for each parameter) was carried out for eight contrasting C x T pairs. KEY RESULTS AND CONCLUSIONS: The parameter values obtained in each situation were consistent with our knowledge of grapevine architecture. Quantitative assessments for the generated virtual scenes were carried out at the canopy and plant scales. Light interception efficiency and local variations of light transmittance within and between experimental plots were correctly simulated for all canopies studied. The approach predicted these key ecophysiological variables significantly more accurately than the classical complete digitization method with a limited number of plants. In addition, this model accurately reproduced the characteristics of a wide range of individual digitized plants. Simulated leaf area density and the distribution of light interception among leaves were consistent with measurements. However, at the level of individual organs, the model tended to underestimate light interception.


Assuntos
Modelos Teóricos , Brotos de Planta/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento , Simulação por Computador , Imageamento Tridimensional/métodos , Brotos de Planta/anatomia & histologia , Vitis/anatomia & histologia
18.
Funct Plant Biol ; 35(10): 885-899, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688840

RESUMO

Maize (Zea mays L.) is a chill-susceptible crop cultivated in northern latitude environments. The detrimental effects of cold on growth and photosynthetic activity have long been established. However, a general overview of how important these processes are with respect to the reduction of productivity reported in the field is still lacking. In this study, a model-assisted approach was used to dissect variations in productivity under suboptimal temperatures and quantify the relative contributions of light interception (PARc) and radiation use efficiency (RUE) from emergence to flowering. A combination of architectural and light transfer models was used to calculate light interception in three field experiments with two cold-tolerant lines and at two sowing dates. Model assessment confirmed that the approach was suitable to infer light interception. Biomass production was strongly affected by early sowings. RUE was identified as the main cause of biomass reduction during cold events. Furthermore, PARc explained most of the variability observed at flowering, its relative contributions being more or less important according to the climate experienced. Cold temperatures resulted in lower PARc, mainly because final leaf length and width were significantly reduced for all leaves emerging after the first cold occurrence. These results confirm that virtual plants can be useful as fine phenotyping tools. A scheme of action of cold on leaf expansion, light interception and radiation use efficiency is discussed with a view towards helping breeders define relevant selection criteria.

19.
Ann Bot ; 99(3): 425-37, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17204533

RESUMO

BACKGROUND AND AIMS: Plant architecture and its interaction with agronomic practices and environmental constraints are determinants of the structure of the canopy, which is involved in carbon acquisition and fruit quality development. A framework for the quantitative analysis of grapevine (Vitis vinifera) shoot architecture, based on a set of topological and geometrical parameters, was developed for the identification of differences between cultivars and the origins of phenotypic variability. METHODS: Two commercial cultivars ('Grenache N', 'Syrah') with different shoot architectures were grown in pots, in well-irrigated conditions. Shoot topology was analysed, using a hidden semi-Markov chain and variable-order Markov chains to identify deviations from the normal pattern of succession of phytomer types (P0-P1-P2), together with kinematic analysis of shoot axis development. Shoot geometry was characterized by final internode and individual leaf area measurements. KEY RESULTS: Shoot architecture differed significantly between cultivars. Secondary leaf area and axis length were greater for 'Syrah'. Secondary leaf area distribution along the main axis also differed between cultivars, with secondary leaves preferentially located towards the basal part of the shoot in 'Syrah'. The main factors leading to differences in leaf area between the cultivars were: (a) slight differences in main shoot structure, with the supplementary P0 phytomer on the lower part of the shoot in 'Grenache N', which bears a short branch; and (b) an higher rate and duration of development of branches bearing by P1-P2 phytomers related to P0 ones at the bottom of the shoot in 'Syrah'. Differences in axis length were accounted for principally by differences in individual internode morphology, with 'Syrah' having significantly longer internodes. This trait, together with a smaller shoot diameter, may account for the characteristic 'droopy' habit of 'Syrah' shoots. CONCLUSIONS: This study highlights the architectural parameters involved in the phenotypic variability of shoot architecture in two grapevine cultivars. Differences in primary shoot structure and in branch development potential accounted for the main differences in leaf area distribution between the two cultivars. By contrast, shoot shape seemed to be controlled by differences in axis length due principally to differences in internode length.


Assuntos
Vitis/anatomia & histologia , Cinética , Cadeias de Markov , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Vitis/classificação , Vitis/crescimento & desenvolvimento
20.
Ann Bot ; 98(1): 175-85, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16679414

RESUMO

BACKGROUND AND AIMS: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated. METHODS: Shoot organogenesis was analysed by distinguishing between the various steps in the development of the main axis and branches. Several experiments were carried out in pots, placed in a greenhouse or outside, in southern France. Soil water deficits of various intensities were imposed during vegetative development of the shoots of two cultivars ('Syrah' and 'Grenache N'). KEY RESULTS: All developmental processes were inhibited by soil water deficit, in an intensity-dependent manner, and sensitivity to water stress was process-dependent. Quantitative relationships with soil water were established for all processes. No difference was observed between the two cultivars for any criterion. The number of leaves on branches was particularly sensitive to soil water deficit, which rapidly and strongly reduced the rate of leaf appearance on developing branches. This response was not related to carbon availability, photosynthetic activity or the soluble sugar content of young expanding leaves. The potential number of branches was not a limiting factor for shoot development. CONCLUSIONS: The particularly high sensitivity to soil water deficit of leaf appearance on branches indicates that this process is a major determinant of the adaptation of plant leaf area to soil water deficit. The origin of this particular developmental response to soil water deficit is unclear, but it seems to be related to constitutive characteristics of branches rather than to competition for assimilates between axes differing in sink strength.


Assuntos
Morfogênese/fisiologia , Solo , Vitis/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Vitis/anatomia & histologia , Vitis/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...