Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Brain Res ; 240(1): 189-198, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34689223

RESUMO

We tested the hypothesis that the inability to move a pen accurately in a graphic task is partly due to a decrease of afferent somatosensory information resulting from overpressure on the tactile receptors of the fingers holding the pen. To disentangle the depressed somatosensory origin from an altered motor command, we compared a condition in which the participant actively produces pressure on the pen (active grip) with a condition in which pressure is passively applied (passive grip, no grip-related motor command). We expected that the response of the somatosensory cortex to electric stimulation of the wrist's tactile nerve (i.e., SEP) would be greater in the natural pen grip (baseline condition) than in the two overpressure conditions (actively or passively induced). Fifteen adults were required to trace a geometrical shape in the three grip conditions. The SEP amplitude was not significantly different between the baseline and both overpressure conditions. However, behavioral results showed that drawing accuracy is impaired when the pressure on the pen is increased (passively or actively). Cortical source analyses revealed that the activity of the superior parietal areas (SPL) increased in both overpressure conditions. Our findings suggest that the SPL is critical for sensorimotor integration, by maintaining an internal representation of pen holding. These cortical changes might witness the impaired updating of the finger-pen interaction force for such drawing actions under visual guidance.


Assuntos
Dedos , Movimento , Adulto , Força da Mão , Humanos , Córtex Somatossensorial , Tato
2.
Neuroscience ; 477: 25-39, 2021 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-34634423

RESUMO

In Parkinson's disease, nigrostriatal dopamine (DA) degeneration is commonly associated with motor symptomatology. However, non-motor symptoms affecting cognitive function, such as behavioural flexibility and inhibitory control may also appear early in the disease. Here we addressed the role of DA innervation of the dorsomedial striatum (DMS) in mediating these functions in 6-hydroxydopamine (6-OHDA)-lesioned mice using instrumental conditioning in various tasks. Behavioural flexibility was studied in a simple reversal task (nose-poke discrimination) or in reversal of a two-step sequence of actions (central followed by lateral nose-poke). Our results show that mild DA lesions of the DMS induces behavioural flexibility deficits in the sequential reversal learning only. In the first sessions following reversal of contingency, lesioned mice enhanced perseverative sequence of actions to the initial rewarded side then produced premature responses directly to the correct side omitting the central response, thus disrupting the two-step sequence of actions. These deficits may be linked to increased impulsivity as 6-OHDA-lesioned mice were unable to inhibit a previously learned motor response in a cued response inhibition task assessing proactive inhibitory control. Our findings show that partial DA denervation restricted to DMS impairs behavioural flexibility and proactive response inhibition in mice. Such striatal DA lesion may thus represent a valuable animal model for exploring deficits in executive control documented in early stage of Parkinson's disease.


Assuntos
Corpo Estriado , Dopamina , Animais , Denervação , Camundongos , Neostriado , Oxidopamina/toxicidade
3.
J Neurosci ; 40(6): 1332-1343, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31862857

RESUMO

An abundant literature has highlighted the importance of the nucleus accumbens core (NAcC) in behavioral tasks dependent on external stimuli. Yet, some studies have also reported the absence of involvement of the NAcC in stimuli processing. We aimed at comparing, in male rats, the underlying neuronal determinants of incentive and instructive stimuli in the same task. We developed a variant of a GO/NOGO task that reveals important differences in these two types of stimuli. The incentive stimulus invites the rat to engage in the task sequence. Once the rat has decided to initiate a trial, it remains engaged in the task until the end of the trial. This task revealed the differential contribution of the NAcC to responding to different types of stimuli: responding to the incentive stimulus depended on NAcC AMPA/NMDA and dopamine D1 receptors, but the retrieval of the response associated with the instructive stimuli (lever pressing on GO, withholding on NOGO) did not. Our electrophysiological study showed that more NAcC neurons responded more strongly to the incentive than the instructive stimuli. Furthermore, when animals did not respond to the incentive stimulus, the induced excitation was suppressed for most projection neurons, whereas interneurons were strongly activated at a latency preceding that found in projection neurons. This work provides insight on the underlying neuronal processes explaining the preferential implication of the NAcC in deciding whether and when to engage in reward-seeking rather than to decide which action to perform.SIGNIFICANCE STATEMENT The nucleus accumbens core (NAcC) is essential to process information carried by reward-predicting stimuli. Yet, stimuli have distinct properties: incentive stimuli orient the attention toward reward-seeking, whereas instructive stimuli inform about the action to perform. Our study shows that, in male rats, NAcC perturbation with glutamate or dopamine antagonists impeded responses to the incentive but not to the instructive stimulus. NAcC neuronal recordings revealed a stronger representation of incentive than instructive stimuli. Furthermore, we found that interneurons are recruited when rats fail to respond to incentive stimuli. This work provides insight on the underlying neuronal processes explaining the preferential implication of the NAcC in deciding whether and when to engage in reward-seeking rather than to decide which action to perform.


Assuntos
Motivação/fisiologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Animais , Masculino , Ratos , Ratos Long-Evans
4.
PLoS One ; 9(9): e108636, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259838

RESUMO

We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90-160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity.


Assuntos
Sensação Gravitacional/fisiologia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Propriocepção/fisiologia , Córtex Somatossensorial/fisiologia , Ausência de Peso , Adulto , Eletroencefalografia , Eletromiografia , Potenciais Somatossensoriais Evocados/fisiologia , Feminino , Humanos , Perna (Membro)/fisiologia , Masculino , Pessoa de Meia-Idade , Movimento/fisiologia , Postura/fisiologia , Vibração , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...