Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Magn Reson Med ; 89(6): 2281-2294, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688262

RESUMO

PURPOSE: This work aims to explore the effect of Blood Brain Barrier (BBB) opening using ultrasound combined with microbubbles injection on cerebral blood flow in rats. METHODS: Two groups of n = 5 rats were included in this study. The first group was used to investigate the impact of BBB opening on the Arterial Spin Labeling (ASL) signal, in particular on the arterial transit time (ATT). The second group was used to analyze the spatiotemporal evolution of the change in cerebral blood flow (CBF) over time following BBB opening and validate these results using DSC-MRI. RESULTS: Using pCASL, a decrease in CBF of up to 29 . 6 ± 15 . 1 % $$ 29.6\pm 15.1\% $$ was observed in the target hemisphere, associated with an increase in arterial transit time. The latter was estimated to be 533 ± 121ms $$ 533\pm 12\mathrm{1ms} $$ in the BBB opening impacted regions against 409 ± 93ms $$ 409\pm 93\mathrm{ms} $$ in the contralateral hemisphere. The spatio-temporal analysis of CBF maps indicated a nonlocal hypoperfusion. DSC-MRI measurements were consistent with the obtained results. CONCLUSION: This study provided strong evidence that BBB opening using microbubble intravenous injection induces a transient hypoperfusion. A spatiotemporal analysis of the hypoperfusion changes allows to establish some points of similarity with the cortical spreading depression phenomenon.


Assuntos
Barreira Hematoencefálica , Imageamento por Ressonância Magnética , Ratos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Artérias , Isquemia , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
2.
Front Cell Neurosci ; 16: 871532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928573

RESUMO

Objective: To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods: A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 µg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results: Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation: The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.

3.
Brain Pathol ; 32(5): e13105, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35773942

RESUMO

Cell therapy is a promising strategy in the field of regenerative medicine; however, several concerns limit the effective clinical use, namely a valid cell source. The gastrointestinal tract, which contains a highly organized network of nerves called the enteric nervous system (ENS), is a valuable reservoir of nerve cells. Together with neurons and neuronal precursor cells, it contains glial cells with a well described neurotrophic potential and a newly identified neurogenic one. Recently, enteric glia is looked at as a candidate for cell therapy in intestinal neuropathies. Here, we present the therapeutic potential of the ENS as cell source for brain repair, too. The example of stroke is introduced as a brain injury where cell therapy appears promising. This disease is the first cause of handicap in adults. The therapies developed in recent years allow a partial response to the consequences of the disease. The only prospect of recovery in the chronic phase is currently based on rehabilitation. The urgency to offer other treatments is therefore tangible. In the first part of the review, some elements of stroke pathophysiology are presented. An update on the available therapeutic strategies is provided, focusing on cell- and biomaterial-based approaches. Following, the ENS is presented with its anatomical and functional characteristics, focusing on glial cells. The properties of these cells are depicted, with particular attention to their neurotrophic and, recently identified, neurogenic properties. Finally, preliminary data on a possible therapeutic approach combining ENS-derived cells and a biomaterial are presented.


Assuntos
Lesões Encefálicas , Sistema Nervoso Entérico , Acidente Vascular Cerebral , Materiais Biocompatíveis , Terapia Baseada em Transplante de Células e Tecidos , Sistema Nervoso Entérico/fisiologia , Humanos , Neuroglia
5.
Transl Stroke Res ; 12(1): 98-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32249405

RESUMO

Ischemic stroke mostly affects the primary motor cortex and descending motor fibres, with consequent motor impairment. Pre-clinical models of stroke with reproducible and long-lasting sensorimotor deficits in higher-order animals are lacking. We describe a new method to induce focal brain damage targeting the motor cortex to study damage to the descending motor tracts in the non-human primate. Stereotaxic injection of malonate into the primary motor cortex produced a focal lesion in middle-aged marmosets (Callithrix jacchus). Assessment of sensorimotor function using a neurological scale and testing of forelimb dexterity and strength lasted a minimum of 12 weeks. Lesion evolution was followed by magnetic resonance imaging (MRI) at 24 h, 1 week, 4 and 12 weeks post-injury and before sacrifice for immunohistochemistry. Our model produced consistent lesions of the motor cortex, subcortical white matter and caudate nucleus. All animals displayed partial spontaneous recovery with long lasting motor deficits of force (54% loss) and dexterity (≈ 70% loss). Clearly visible T2 hypointensity in the white matter was observed with MRI and corresponded to areas of chronic gliosis in the internal capsule and lenticular fasciculus. We describe a straightforward procedure to reproducibly injure the motor cortex in the marmoset monkey, causing long-lasting motor deficits. The MRI signature reflects Wallerian degeneration and remote injury of corticospinal and corticopontine tracts, as well as subcortical motor loops. Our model may be suitable for the testing of therapies for post-stroke recovery, particularly in the chronic phase.


Assuntos
Modelos Animais de Doenças , Força da Mão/fisiologia , AVC Isquêmico/induzido quimicamente , AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Malonatos/toxicidade , Animais , Callithrix , Feminino , Seguimentos , Masculino , Malonatos/administração & dosagem , Reprodutibilidade dos Testes , Técnicas Estereotáxicas/normas
6.
MethodsX ; 7: 101056, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32995309

RESUMO

Functional magnetic resonance imaging (fMRI) is a widely used technique for assessing brain function in both healthy and pathological populations. Some factors, such as motion, physiological noise and lesion presence, can contribute to signal change and confound the fMRI data, but fMRI data processing techniques have been developed to correct for these confounding effects. Fifteen spastic subacute stroke patients underwent fMRI while performing a highly controlled task (i.e. passive extension of their affected and unaffected wrists). We investigated the impact on activation maps of lesion masking during preprocessing and first- and second-level analyses, and of adding wrist extension amplitudes and physiological data as regressors using the Statistical Parametric Mapping toolbox (SPM12). We observed a significant decrease in sensorimotor region activation after the addition of lesion masks and movement/physiological regressors during the processing of stroke patients' fMRI data. Our results demonstrate that:•The unified segmentation routine results in good normalization accuracy when dealing with stroke lesions regardless of their size;•Adding a group lesion mask during the second-level analysis seems to be a suitable option when none of the patients have lesions in target regions. Otherwise, no masking is acceptable;•Movement amplitude is a significant contributor to the sensorimotor activation observed during passive wrist extension in spastic stroke patients;•Movement features and physiological noise are relevant factors when interpreting for sensorimotor activation in studies of the motor system in patients with brain lesions. They can be added as nuisance covariates during large patient groups' analyses.

7.
J Neuroeng Rehabil ; 17(1): 130, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993695

RESUMO

BACKGROUND: After stroke, kinematic measures obtained with non-robotic and robotic devices are highly recommended to precisely quantify the sensorimotor impairments of the upper-extremity and select the most relevant therapeutic strategies. Although the ArmeoSpring exoskeleton has demonstrated its effectiveness in stroke motor rehabilitation, its interest as an assessment tool has not been sufficiently documented. The aim of this study was to investigate the psychometric properties of selected kinematic parameters obtained with the ArmeoSpring in post-stroke patients. METHODS: This study involved 30 post-stroke patients (mean age = 54.5 ± 16.4 years; time post-stroke = 14.7 ± 26.7 weeks; Upper-Extremity Fugl-Meyer Score (UE-FMS) = 40.7 ± 14.5/66) who participated in 3 assessment sessions, each consisting of 10 repetitions of the 'horizontal catch' exercise. Five kinematic parameters (task and movement time, hand path ratio, peak velocity, number of peak velocity) and a global Score were computed from raw ArmeoSpring' data. Learning effect and retention were analyzed using a 2-way repeated-measures ANOVA, and reliability was investigated using the intra-class correlation coefficient (ICC) and minimal detectable change (MDC). RESULTS: We observed significant inter- and intra-session learning effects for most parameters except peak velocity. The measures performed in sessions 2 and 3 were significantly different from those of session 1. No additional significant difference was observed after the first 6 trials of each session and successful retention was also highlighted for all the parameters. Relative reliability was moderate to excellent for all the parameters, and MDC values expressed in percentage ranged from 42.6 to 102.8%. CONCLUSIONS: After a familiarization session, the ArmeoSpring can be used to reliably and sensitively assess motor impairment and intervention effects on motor learning processes after a stroke. Trial registration The study was approved by the local hospital ethics committee in September 2016 and was registered under number 05-0916.


Assuntos
Exoesqueleto Energizado , Recuperação de Função Fisiológica , Robótica/instrumentação , Reabilitação do Acidente Vascular Cerebral/instrumentação , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Aprendizagem , Masculino , Pessoa de Meia-Idade , Psicometria , Reprodutibilidade dos Testes , Acidente Vascular Cerebral , Extremidade Superior/fisiopatologia
8.
Brain Connect ; 10(5): 236-249, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32414294

RESUMO

Stroke is known to cause widespread activation and connectivity changes resulting in different levels of functional impairment. Recovery of motor functions is thought to rely mainly on reorganizations within the sensorimotor cortex, but increasing attention is being paid to other cerebral regions. To investigate the motor task-related functional connectivity (FC) of the ipsilesional premotor cortex (PMC) and its relation to residual motor output after stroke in a population of mostly poorly recoverd patients. Twenty-four stroke patients (23 right handed, mean age = 52.4 ± 12.6 years) with varying levels of motor deficits underwent functional magnetic resonance imaging while performing different motor tasks (passive mobilization, motor execution, and motor imagery of an extension movement of the unaffected hand [UH] or affected hand [AH]). For the different motor tasks, analyses of cerebral activation and task-related FC of the ipsilesional lateral sensorimotor network (SMN), and particularly the premotor cortex (PMC), were performed. Compared with UH data, FC of the ipsilesional lateral SMN during the passive or active motor tasks involving the AH was decreased with regions of the ipsilesional SMN and was increased with regions of the bilateral frontal and the ipsilesional posterior parietal cortices such as the precuneus (Pcu). During passive wrist mobilization, FC between the ipsilesional PMC and the contralesional SMN was negatively correlated with residual motor function, whereas that with nonmotor regions such as the bilateral Pcu and the contralesional dorsolateral prefrontal cortex was positively correlated with the residual motor function. Cross-modal FC of the ipsilesional PMC may reflect compensation strategies after stroke. The results emphasize the importance of the PMC and other nonmotor regions as prominent nodes involved in reorganization processes after a stroke.


Assuntos
Conectoma , Córtex Motor/fisiopatologia , Movimento/fisiologia , Córtex Pré-Frontal/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Extremidade Superior/fisiopatologia , Adulto , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Córtex Motor/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Acidente Vascular Cerebral/diagnóstico por imagem
10.
Brain Res Bull ; 152: 202-211, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31348979

RESUMO

The development of cellular microenvironments suitable for neural tissue engineering purposes involves a plethora of research fields ranging from cell biology to biochemistry, neurosciences, physics, nanotechnology, mechanobiology. In the last two decades, this multi-disciplinary activity has led to the emergence of numerous strategies to create architectures capable of reproducing the topological, biochemical and mechanical properties of the extracellular matrix present in the central (CNS) and peripheral nervous system (PNS). Some of these approaches have succeeded in inducing the functional recovery of damaged areas in the CNS and the PNS to address the current lack of effective medical treatments for this type of injury. In this review, we analyze recent developments in the realization of two-dimensional and three-dimensional neuronal scaffolds following either top-down or bottom-up approaches. After providing an overview of the different fabrication techniques employed for tailoring the biomaterials, we draw on specific examples to describe the major features of the developed approaches. We then conclude with prospective proof of concept studies on guiding scaffolds and regenerative models on macro-scale brain implants targeting neural regeneration.


Assuntos
Regeneração Nervosa/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/tendências , Animais , Materiais Biocompatíveis , Sistema Nervoso Central/fisiologia , Matriz Extracelular/fisiologia , Humanos , Sistema Nervoso Periférico/fisiologia , Medicina Regenerativa/métodos , Células-Tronco/metabolismo
11.
Nanoscale ; 11(32): 15043-15056, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31179473

RESUMO

In this work, we describe how a simple single low molecular weight gelator (LMWG) molecule - N-heptyl-d-galactonamide, which is easy to produce at the gram scale - is spun into gel filaments by a wet spinning process based on solvent exchange. A solution of the gelator in DMSO is injected into water and the solvent diffusion triggers the supramolecular self-assembly of the N-heptyl-d-galactonamide molecules into nanometric fibers. These fibers entrap around 97% of water, thus forming a highly hydrated hydrogel filament, deposited in a well organized coil and locally aligned. This self-assembly mechanism also leads to a very narrow distribution of the supramolecular fiber width, around 150 nm. In addition, the self-assembled fibers are oriented radially inside the wet-spun filaments and at a high flow rate, fibers are organized in spirals. As a result, this process gives rise to a high control of the gelator self-assembly compared with the usual thermal sol-gel transition. This method also opens the way to the controlled extrusion at room temperature of these very simple, soft, biocompatible but delicate hydrogels. The gelator concentration and the flow rates leading to the formation of the gel filaments have been screened. The filament diameter, its internal morphology, the solvent exchange and the velocity of the jet have been investigated by video image analysis and electron microscopy. The stability of these delicate hydrogel ropes has been studied, revealing a polymorphic transformation into macroscopic crystals with time under some storage conditions. The cell viability of a neuronal cell line on the filaments has also been estimated.


Assuntos
Carboidratos/química , Hidrogéis/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrogéis/síntese química , Hidrogéis/farmacologia , Peso Molecular , Solventes/química , Açúcares Ácidos/química , Termogravimetria
12.
ACS Appl Mater Interfaces ; 10(20): 17004-17017, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29757611

RESUMO

In this work, we demonstrated that the hydrogel obtained from a very simple and single synthetic molecule, N-heptyl-galactonamide was a suitable scaffold for the growth of neuronal cells in 3D. We evidenced by confocal microscopy the presence of the cells into the gel up to a depth of around 200 µm, demonstrating that the latter was permissive to cell growth and enabled a true 3D colonization and organization. It also supported successfully the differentiation of adult human neuronal stem cells (hNSCs) into both glial and neuronal cells and the development of a really dense neurofilament network. So the gel appears to be a good candidate for neural tissue regeneration. In contrast with other molecular gels described for cell culture, the molecule can be obtained at the gram scale by a one-step reaction. The resulting gel is very soft, a quality in accordance with the aim of growing neuronal cells, that requires low modulus substrates similar to the brain. But because of its fragility, specific procedures had to be implemented for its preparation and for cell labeling and confocal microscopy observations. Notably, the implementation of a controlled slow cooling of the gel solution was needed to get a very soft but nevertheless cohesive gel. In these conditions, very wide straight and long micrometric fibers were formed, held together by a second network of flexible narrower nanometric fibers. The two kinds of fibers guided the neurite and glial cell growth in a different way. We also underlined the importance of a tiny difference in the molecular structure on the gel performances: parent molecules, differing by a one-carbon increment in the alkyl chain length, N-hexyl-galactonamide and N-octyl-galactonamide, were not as good as N-heptyl-galactonamide. Their differences were analyzed in terms of gel fibers morphology, mechanical properties, solubility, chain parity, and cell growth.


Assuntos
Hidrogéis/química , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Neuritos , Neurogênese , Neurônios , Alicerces Teciduais
13.
Front Neurol ; 9: 1072, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619036

RESUMO

Background: Stroke is the first cause of disability in adults in western countries. Infarct of the internal capsule (IC) may be related to motor impairment and poor prognosis in stroke patients. Functional deficits due to medium-sized infarcts are difficult to predict, except if the specific site of the lesion is taken into account. None of the few pre-clinical models recapitulating this type of stroke has shown clear, reproducible, and long-lasting sensorimotor deficits. Here, we developed a rat model of lacunar infarction within the IC, key structure of the sensorimotor pathways, by precise injection of malonate. Methods: The mitochondrial toxin malonate was injected during stereotactic surgery into the IC of rat brains. Rats were divided in three groups: two groups received malonate solution at 1.5M (n = 12) or at 3M (n = 10) and a sham group (n = 5) received PBS. Three key motor functions usually evaluated following cerebral lesion in the clinic strength, target reaching, and fine dexterity were assessed in rats by a forelimb grip strength test, a skilled reaching task (staircase) for reaching and dexterity, and single pellet retrieval task. Sensorimotor functions were evaluated by a neurological scale. Live brain imaging, using magnetic resonance (MRI), and post-mortem immunohistochemistry in brain slices were performed to characterize the lesion site after malonate injection. Results: Intracerebral injection of malonate produced a 100% success rate in inducing a lesion in the IC. All rats receiving the toxin, regardless the dose injected, had similar deficits in strength and dexterity of the contralateral forepaw, and showed significant neurological impairment. Additionally, only partial recovery was observed with respect to strength, while no recovery was observed for dexterity and neurological deficit. MRI and immunostaining show volume size and precise location of the lesion in the IC, destruction of axonal structures and Wallerian degeneration of fibers in the area above the injection site. Conclusions: This pre-clinical model of lacunar stroke induces a lesion in the IC with measurable and reproducible sensorimotor deficits, and limited recovery with stabilization of performance 2 weeks post-injury. Future therapies in stroke may be successfully tested in this model.

14.
Ann Phys Rehabil Med ; 61(2): 78-84, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29274471

RESUMO

BACKGROUND: Non-invasive brain stimulation has been studied as a therapeutic adjunct for upper-limb recovery in patients with stroke. One type of stimulation, paired associative stimulation (PAS), has effects on plasticity in both patients and healthy participants. Lasting several hours, these effects are reversible and topographically specific. OBJECTIVE: The goal was to investigate the presence of a lasting increase in motor cortex plasticity for extensor wrist muscles - extensor carpi radialis (ECR) - and an improvement in upper-limb function after 5 days of daily PAS in patients at the subacute post-stroke stage. METHODS: A total of 24 patients (mean [SD] age 50.1 [12.1] years, weeks since stroke 10.1 [5.3]) were included in a double-blind, placebo-controlled trial and randomly assigned to the PAS or sham group (n=13 and n=11). For the PAS group, patients underwent a 5-day course of electrical peripheral stimulation combined with magnetic cortical stimulation applied to the ECR muscle in a single daily session at 0.1Hz for 30min; patients with sham treatment received minimal cortical stimulation. Both patient groups underwent 2 hr of conventional physiotherapy. Variations in the motor evoked potential (MEP) surface area of the ECR muscle and Fugl-Meyer Assessment-Upper-Limb motor scores were analysed up to day 12. RESULTS: The 2 groups did not differ in electrophysiological or motor parameters. Repeated PAS sessions seemed to affect only patients with low initial cortical excitability. We found considerable variability in PAS effects between patients and across the sessions. CONCLUSION: We failed to induce a lasting effect with PAS in the present study. PAS does not seem to be the main method for post-stroke brain stimulation. Perhaps recruitment of patients could be more selective, possibly targeting those with a wide altered ipsilesional corticomotor pathway.


Assuntos
Terapia por Estimulação Elétrica/métodos , Córtex Motor/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Adulto , Método Duplo-Cego , Potencial Evocado Motor/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Resultado do Tratamento , Punho/fisiopatologia
15.
Brain Imaging Behav ; 12(5): 1363-1378, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29243119

RESUMO

Virtual reality (VR)-based paradigms use visual stimuli that can modulate visuo-motor networks leading to the stimulation of brain circuits. The aims of this study were to compare the changes in blood-oxygenation level dependent (BOLD) signal when watching and imitating moving real (RH) and virtual hands (VH) in 11 healthy participants (HP). No differences were found between the observation of RH or VH making this VR-based experiment a promising tool for rehabilitation protocols. VH-imitation involved more the ventral premotor cortex (vPMC) as part of the mirror neuron system (MNS) compared to execution and VH-observation conditions. The dorsal-anterior Precuneus (da-Pcu) as part of the Precuneus/posterior Cingulate Cortex (Pcu/pCC) complex, a key node of the Default Mode Network (DMN), was also less deactivated and therefore more involved. These results may reflect the dual visuo-motor roles for the vPMC and the implication of the da-Pcu in the reallocation of attentional and neural resources for bimodal task management. The ventral Pcu/pCC was deactivated regardless of the condition confirming its role in self-reference processes. Imitation of VH stimuli can then modulate the activation of specific areas including those belonging to the MNS and the DMN.


Assuntos
Encéfalo/fisiologia , Mãos , Comportamento Imitativo/fisiologia , Percepção de Movimento/fisiologia , Atividade Motora/fisiologia , Realidade Virtual , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurônios-Espelho/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Estudo de Prova de Conceito , Desempenho Psicomotor/fisiologia
16.
Stem Cell Res Ther ; 8(1): 253, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116017

RESUMO

BACKGROUND: The adult brain is unable to regenerate itself sufficiently after large injuries. Therefore, hopes rely on therapies using neural stem cell or biomaterial transplantation to sustain brain reconstruction. The aim of the present study was to evaluate the improvement in sensorimotor recovery brought about by human primary adult neural stem cells (hNSCs) in combination with bio-implants. METHODS: hNSCs were pre-seeded on implants micropatterned for neurite guidance and inserted intracerebrally 2 weeks after a primary motor cortex lesion in rats. Long-term behaviour was significantly improved after hNSC implants versus cell engraftment in the grip strength test. MRI and immunohistological studies were conducted to elucidate the underlying mechanisms of neuro-implant integration. RESULTS: hNSC implants promoted tissue reconstruction and limited hemispheric atrophy and glial scar expansion. After 3 months, grafted hNSCs were detected on implants and expressed mature neuronal markers (NeuN, MAP2, SMI312). They also migrated over a short distance to the reconstructed tissues and to the peri-lesional tissues, where 26% integrated as mature neurons. Newly formed host neural progenitors (nestin, DCX) colonized the implants, notably in the presence of hNSCs, and participated in tissue reconstruction. The microstructured bio-implants sustained the guided maturation of both grafted hNSCs and endogenous progenitors. CONCLUSIONS: These immunohistological results are coherent with and could explain the late improvement observed in sensorimotor recovery. These findings provide novel insights into the regenerative potential of primary adult hNSCs combined with microstructured implants.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Regeneração/fisiologia , Diferenciação Celular/fisiologia , Proteína Duplacortina , Humanos , Engenharia Tecidual
17.
PLoS One ; 12(9): e0184630, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926581

RESUMO

INTRODUCTION: Cell transplantation is an innovative therapeutic approach after brain injury to compensate for tissue damage. To have real-time longitudinal monitoring of intracerebrally grafted cells, we explored the feasibility of a molecular imaging approach using thymidine kinase HSV1-TK gene encoding and [18F]FHBG as a reporter probe to image enzyme expression. METHODS: A stable neuronal cell line expressing HSV1-TK was developed with an optimised mammalian expression vector to ensure long-term transgene expression. After [18F]FHBG incubation under defined parameters, calibration ranges from 1 X 104 to 3 X 106 Neuro2A-TK cells were analysed by gamma counter or by PET-camera. In parallel, grafting with different quantities of [18F]FHBG prelabelled Neuro2A-TK cells was carried out in a rat brain injury model induced by stereotaxic injection of malonate toxin. Image acquisition of the rats was then performed with PET/CT camera to study the [18F]FHBG signal of transplanted cells in vivo. RESULTS: Under the optimised incubation conditions, [18F]FHBG cell uptake rate was around 2.52%. In-vitro calibration range analysis shows a clear linear correlation between the number of cells and the signal intensity. The PET signal emitted into rat brain correlated well with the number of cells injected and the number of surviving grafted cells was recorded via the in-vitro calibration range. PET/CT acquisitions also allowed validation of the stereotaxic injection procedure. Technique sensitivity was evaluated under 5 X 104 grafted cells in vivo. No [18F]FHBG or [18F]metabolite release was observed showing a stable cell uptake even 2 h post-graft. CONCLUSION: The development of this kind of approach will allow grafting to be controlled and ensure longitudinal follow-up of cell viability and biodistribution after intracerebral injection.


Assuntos
Lesões Encefálicas/diagnóstico por imagem , Vetores Genéticos/metabolismo , Herpesvirus Humano 1/genética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/metabolismo , Timidina Quinase/genética , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas/patologia , Linhagem Celular , Transplante de Células , Modelos Animais de Doenças , Radioisótopos de Flúor/química , Vetores Genéticos/genética , Guanina/análogos & derivados , Guanina/síntese química , Guanina/metabolismo , Humanos , Camundongos , Compostos Radiofarmacêuticos/síntese química , Ratos , Ratos Sprague-Dawley , Timidina Quinase/metabolismo
18.
J Colloid Interface Sci ; 504: 721-730, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28622565

RESUMO

A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing.


Assuntos
Materiais Biocompatíveis/química , Géis/química , Micelas , Açúcares/química , Alcinos/química , Animais , Azidas/química , Linhagem Celular , Sobrevivência Celular , Química Click , Teste de Materiais , Camundongos , Modelos Moleculares , Neurônios/citologia , Reologia , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28558136

RESUMO

The realization of 3D architectures for the study of cell growth, proliferation, and differentiation is a task of fundamental importance for both technological and biological communities involved in the development of biomimetic cell culture environments. Here we report the fabrication of 3D freestanding scaffolds, realized by multiphoton direct laser writing and seeded with neuroblastoma cells, and their multitechnique characterization using advanced 3D fluorescence imaging approaches. The high accuracy of the fabrication process (≈200 nm) allows a much finer control of the micro- and nanoscale features compared to other 3D printing technologies based on fused deposition modeling, inkjet printing, selective laser sintering, or polyjet technology. Scanning electron microscopy (SEM) provides detailed insights about the morphology of both cells and cellular interconnections around the 3D architecture. On the other hand, the nature of the seeding in the inner core of the 3D scaffold, inaccessible by conventional SEM imaging, is unveiled by light sheet fluorescence microscopy and multiphoton confocal imaging highlighting an optimal cell colonization both around and within the 3D scaffold as well as the formation of long neuritic extensions. The results open appealing scenarios for the use of the developed 3D fabrication/3D imaging protocols in several neuroscientific contexts.


Assuntos
Materiais Biocompatíveis/química , Imageamento Tridimensional/métodos , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
20.
Neural Plast ; 2017: 2545736, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29391951

RESUMO

Stroke represents the first cause of adult acquired disability. Spontaneous recovery, dependent on endogenous neurogenesis, allows for limited recovery in 50% of patients who remain functionally dependent despite physiotherapy. Here, we propose a review of novel drug therapies with strong potential in the clinic. We will also discuss new avenues of stem cell therapy in patients with a cerebral lesion. A promising future for the development of efficient drugs to enhance functional recovery after stroke seems evident. These drugs will have to prove their efficacy also in severely affected patients. The efficacy of stem cell engraftment has been demonstrated but will have to prove its potential in restoring tissue function for the massive brain lesions that are most debilitating. New answers may lay in biomaterials, a steadily growing field. Biomaterials should ideally resemble lesioned brain structures in architecture and must be proven to increase functional reconnections within host tissue before clinical testing.


Assuntos
Plasticidade Neuronal , Transplante de Células-Tronco , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Animais , Materiais Biocompatíveis , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Humanos , Nanotecnologia , Fármacos Neuroprotetores , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...