Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39066182

RESUMO

Rift Valley fever (RVF) is a re-emerging vector-borne zoonosis with a high public health and veterinary impact. In West Africa, many lineages were previously detected, but since 2020, lineage H from South Africa has been the main cause of the outbreaks. In this study, clinical samples collected through national surveillance were screened for RVF virus (RVFV) acute infection by RT-PCR and IgM ELISA tests. Sequencing, genome mapping and in vitro phenotypic characterization in mammal cells were performed on RT-PCR positive samples in comparison with other epidemic lineages (G and C). Four RVFV human cases were detected in Senegal and the sequence analyses revealed that the strains belonged to lineage H. The in vitro kinetics and genome mapping showed different replication efficiency profiles for the tested RVFV lineages and non-conservative mutations, which were more common to lineage G or specific to lineage H. Our findings showed the re-emergence of lineage H in Senegal in 2022, its high viral replication efficiency in vitro and support the findings that genetic diversity affects viral replication. This study gives new insights into the biological properties of lineage H and calls for deeper studies to better assess its potential to cause a future threat in Senegal.


Assuntos
Genoma Viral , Filogenia , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Replicação Viral , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/isolamento & purificação , Vírus da Febre do Vale do Rift/classificação , Vírus da Febre do Vale do Rift/fisiologia , Febre do Vale de Rift/virologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/transmissão , Senegal/epidemiologia , Humanos , Animais , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças , África Ocidental/epidemiologia , Variação Genética , Mutação
2.
Virol J ; 21(1): 163, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044231

RESUMO

Usutu virus (USUV), an arbovirus from the Flaviviridae family, genus Flavivirus, has recently gained increasing attention because of its potential for emergence. After his discovery in South Africa, USUV spread to other African countries, then emerged in Europe where it was responsible for epizootics. The virus has recently been found in Asia. USUV infection in humans is considered to be most often asymptomatic or to cause mild clinical signs. However, a few cases of neurological complications such as encephalitis or meningo-encephalitis have been reported in both immunocompromised and immunocompetent patients. USUV natural life cycle involves Culex mosquitoes as its main vector, and multiple bird species as natural viral reservoirs or amplifying hosts, humans and horses can be incidental hosts. Phylogenetic studies carried out showed eight lineages, showing an increasing genetic diversity for USUV. This work describes the development and validation of a novel whole-genome amplicon-based sequencing approach to Usutu virus. This study was carried out on different strains from Senegal and Italy. The new approach showed good coverage using samples derived from several vertebrate hosts and may be valuable for Usutu virus genomic surveillance to better understand the dynamics of evolution and transmission of the virus.


Assuntos
Infecções por Flavivirus , Flavivirus , Genoma Viral , Filogenia , Flavivirus/genética , Flavivirus/classificação , Flavivirus/isolamento & purificação , Animais , Infecções por Flavivirus/virologia , Infecções por Flavivirus/veterinária , Humanos , Senegal , Itália , Aves/virologia , RNA Viral/genética , Variação Genética , Culex/virologia , Sequenciamento Completo do Genoma , Cavalos/virologia
3.
Emerg Infect Dis ; 30(8): 1687-1691, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043450

RESUMO

In December 2023, we observed through hospital-based surveillance a severe outbreak of enterovirus D68 infection in pediatric inpatients in Dakar, Senegal. Molecular characterization revealed that subclade B3, the dominant lineage in outbreaks worldwide, was responsible for the outbreak. Enhanced surveillance in inpatient settings, including among patients with neurologic illnesses, is needed.


Assuntos
Surtos de Doenças , Enterovirus Humano D , Infecções por Enterovirus , Infecções Respiratórias , Humanos , Senegal/epidemiologia , Enterovirus Humano D/genética , Enterovirus Humano D/classificação , Enterovirus Humano D/isolamento & purificação , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/diagnóstico , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Pré-Escolar , Lactente , Criança , Filogenia , Masculino , Feminino , Doença Aguda/epidemiologia , Adolescente , Hospitais , História do Século XXI
4.
Emerg Microbes Infect ; 13(1): 2373308, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38934257

RESUMO

Chikungunya virus has caused millions of cases worldwide over the past 20 years, with recent outbreaks in Kedougou region in the southeastern Senegal, West Africa. Genomic characterization highlights that an ongoing epidemic in Kedougou in 2023 is not due to an introduction event but caused by the re-emergence of an endemic strain evolving linearly in a sylvatic context.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Surtos de Doenças , Genoma Viral , Filogenia , Senegal/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Humanos , Vírus Chikungunya/genética , Vírus Chikungunya/classificação , Vírus Chikungunya/isolamento & purificação , Genômica , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Animais
5.
Emerg Infect Dis ; 30(4): 770-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526209

RESUMO

In 2020, a sylvatic dengue virus serotype 2 infection outbreak resulted in 59 confirmed dengue cases in Kedougou, Senegal, suggesting those strains might not require adaptation to reemerge into urban transmission cycles. Large-scale genomic surveillance and updated molecular diagnostic tools are needed to effectively prevent dengue virus infections in Senegal.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Senegal/epidemiologia , Sorogrupo , Meio Ambiente , Dengue/epidemiologia
6.
Trop Med Infect Dis ; 9(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38393121

RESUMO

Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.

7.
Viruses ; 16(2)2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400090

RESUMO

Crimean-Congo hemorrhagic fever (CCHF), the most widespread tick-borne viral human infection, poses a threat to global health. In this study, clinical samples collected through national surveillance systems were screened for acute CCHF virus (CCHFV) infection using RT-PCR and for exposure using ELISA. For any CCHF-positive sample, livestock and tick samples were also collected in the neighborhood of the confirmed case and tested using ELISA and RT-PCR, respectively. Genome sequencing and phylogenetic analyses were also performed on samples with positive RT-PCR results. In Eastern Senegal, two human cases and one Hyalomma tick positive for CCHF were identified and a seroprevalence in livestock ranging from 9.33% to 45.26% was detected. Phylogenetic analyses revealed that the human strain belonged to genotype I based on the available L segment. However, the tick strain showed a reassortant profile, with the L and M segments belonging to genotype I and the S segment belonging to genotype III. Our data also showed that our strains clustered with strains isolated in different countries, including Mauritania. Therefore, our findings confirmed the high genetic variability inside the CCHF genotypes and their introduction to Senegal from other countries. They also indicate an increasing CCHF threat in Senegal and emphasize the need to reinforce surveillance using a one-health approach.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Humanos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/epidemiologia , Filogenia , Estudos Soroepidemiológicos , Senegal/epidemiologia , Gado
8.
EClinicalMedicine ; 67: 102379, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188691

RESUMO

Background: Despite significant progress in malaria control over the past twenty years, malaria remains a leading cause of child morbidity and mortality in Tropical Africa. As most patients do not consult any health facility much uncertainty persists about the true burden of the disease and the range of individual differences in susceptibility to malaria. Methods: Over a 25-years period, from 1990 to 2015, the inhabitants of Dielmo village, Senegal, an area of intense malaria transmission, have been monitored daily for their presence in the village and the occurrence of diseases. In case of fever thick blood films were systematically examined through microscopy for malaria parasites and patients received prompt diagnosis and treatment. Findings: We analysed data collected in 111 children and young adults monitored for at least 10 years (mean 17.3 years, maximum 25 years) enrolled either at birth (95 persons) or during the two first years of life. A total of 11,599 episodes of fever were documented, including 5268 malaria attacks. The maximum number of malaria attacks in a single person was 112. Three other persons suffered one hundred or more malaria attacks during follow-up. The minimum number of malaria attacks in a single person was 11. The mean numbers of malaria attacks in children reaching their 4th, 7th, and 10th birthdays were 23.0, 37.7, and 43.6 attacks since birth, respectively. Sixteen children (14.4%) suffered ten or more malaria attacks each year at ages 1-3 years, and six children (5.4%) each year at age 4-6 years. Interpretation: Long-term close monitoring shows that in highly endemic areas the malaria burden is higher than expected. Susceptibility to the disease may vary up to 10-fold, and for most children childhood is an endless history of malaria fever episodes. No other parasitic, bacterial or viral infection in human populations has such an impact on health. Funding: The Pasteur Institutes of Dakar and Paris, the Institut de Recherche pour le Développement, and the French Ministry of Cooperation provided funding.

9.
Virus Res ; 339: 199259, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926155

RESUMO

In Senegal, since its first detection in early March 2020, genomic surveillance of SARS-CoV-2 isolates has led to the identification of the emergence of the Omicron BA.4 and BA.5 sublineages from early June 2022. To investigate the origin of a cluster of cases in Northern Senegal on July 2022, isolates were analysed using Next-generation sequencing and phylogeny. Our data provided evidence of the origin of the cluster of BA.4 cases from a XAS recombinant, that is to date, the first reported sequence of this variant from Senegal. Continuous genomic surveillance of positive SARS-CoV-2 samples is a crucial need.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Senegal , Filogenia , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA