Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38256713

RESUMO

Significant progress has been achieved in the use of biostimulants in sustainable agricultural practices. These new products can improve plant growth, nutrient uptake, crop yield and quality, stress adaptation and soil fertility, while reducing agriculture's environmental footprint. Although it is an emerging market, the biostimulant sector is very promising, hence the increasing attention of the scientific community and agro-industry stakeholders in finding new sources of plant biostimulants. Recently, pro- and eucaryotic microalgae have gained prominence and can be exploited as biostimulants due to their ability to produce high-value-added metabolites. Several works revealed the potential of microalgae- and cyanobacteria-based biostimulants (MCBs) as plant growth promoters and stress alleviators, as well as encouraging results pointing out that their use can address current and future agricultural challenges. In contrast to macroalgae biostimulants, the targeted applications of MBs in agriculture are still in their earlier stages and their commercial implementation is constrained by the lack of research and cost of production. The purpose of this paper is to provide a comprehensive overview on the use of this promising new category of plant biostimulants in agriculture and to highlight the current knowledge on their application prospects. Based on the prevailing state of the art, we aimed to roadmap MCB formulations from microalgae and cyanobacteria strain selection, algal biomass production, extraction techniques and application type to product commercialization and farmer and consumer acceptance. Moreover, we provide examples of successful trials demonstrating the beneficial applications of microalgal biostimulants as well as point out bottlenecks and constraints regarding their successful commercialization and input in sustainable agricultural practices.

2.
Water Environ Res ; 94(8): e10782, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36029154

RESUMO

The intensive human activities extensively contaminated water sources making its treatment a problem of paramount importance, especially with the increasing of global population and water scarcity. The application of natural coagulants has become a promising and environmentally friendly alternative to conventional ones. This study was aimed at evaluating the efficiency of four plant extracts namely Agave americana, Carpobrotus acinaciformis, Austrocylindropuntia subulate, and Senicio anteuphorbium as natural coagulants to remove Microcystis aeruginosa cyanobacterium from water. The effects of pH (4, 5, 6, 7, 8 9, and 10) and coagulant dose (5, 10, 15, 20, 25, and 30 mg/L) on the coagulation efficiency were investigated. Results showed that plant-based extracts exhibited high coagulant abilities significantly contributing to the removal of M. aeruginosa cells up to 80% on a case-by-case basis. The ecotoxicity (Daphnia magna, Aliivibrio fischeri, Raphidocelis subcapitata, and Sorghum saccharatum) was absent or presented very slight acute toxicity up to 12.5 mg/L being S. anteuphorbium the least toxic. PRACTITIONER POINTS: Nature-based plant extracts showed removal rates up to 80%. Lower pH and A. subulate and S. anteuphorbium were the most efficient coagulants Toxicity effects were plant extracts-based and dose function. A. subulate and S. anteuphorbium were the least toxic extracts.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Animais , Daphnia , Ecotoxicologia , Humanos , Extratos Vegetais
3.
Environ Sci Pollut Res Int ; 29(28): 42601-42615, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384538

RESUMO

In recent years, the proliferation of Harmful Cyanobacterial Blooms (CyanoHABs) has increased with water eutrophication and climate change, impairing human health and the environment in relation to water supply. In drinking water treatment plants (DWTPs), the bio-coagulation based on natural coagulants has been studied as an eco-friendly alternative technology to conventional coagulants for both turbidity and CyanoHABs removal. Plant-based coagulants have demonstrated their coagulation efficiency in turbidity removal, as reported in several papers but its ability in cyanobacterial removal is still limited. This paper mainly reviewed the application of plant-based coagulants in DWTPs, with focus on turbidity removal, including cyanobacterial cells. The future potential uses of these green coagulants to reduce noxious effects of cyanobacterial proliferation are presented. Green coagulants advantages and limitations in DWTPs are reviewed and discussed summarizing more than 10 years of knowledge.


Assuntos
Cianobactérias , Purificação da Água , Mudança Climática , Eutrofização , Humanos
4.
Microorganisms ; 9(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442861

RESUMO

Increasing toxic cyanobacterial blooms in freshwater demand environmentally friendly solutions to control their growth and toxicity, especially in arid countries, where most drinking water is produced from surface reservoirs. We tested the effects of macrophyte allelochemicals on Microcystis aeruginosa and on the fundamental role of bacteria in nutrient recycling. The effects of Ranunculus aquatilis aqueous extract, the most bioactive of four Moroccan macrophyte extracts, were tested in batch systems on M. aeruginosa growth, toxin production and oxidative stress response and on the ectoenzymatic activity associated with the bacterial community. M. aeruginosa density was reduced by 82.18%, and a significant increase in oxidative stress markers was evidenced in cyanobacterial cells. Microcystin concentration significantly decreased, and they were detected only intracellularly, an important aspect in managing toxic blooms. R. aquatilis extract had no negative effects on associated bacteria. These results confirm a promising use of macrophyte extracts, but they cannot be generalized. The use of the extract on other toxic strains, such as Planktothrix rubescens, Raphidiopsis raciborskii and Chrysosporum ovalisporum, caused a reduction in growth rate but not in cyanotoxin content, increasing toxicity. The need to assess species-specific cyanobacteria responses to verify the efficacy and safety of the extracts for human health and the environment is highlighted.

5.
Environ Sci Pollut Res Int ; 27(16): 19630-19637, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32219655

RESUMO

Many studies have demonstrated the effectiveness of algicidal compounds produced by macrophytes against microalgae. The aim of this study was to assess the algicidal activity of seven Moroccan macrophyte ethyl acetate extracts (MEA) to control harmful algal blooms (HABs). The response and sensitivity of prokaryotic toxic cyanobacteria (Microcystis aeruginosa) and eukaryotic microalgae (Chlorella sp.) were highlighted. The algicidal effect of MEA extracts against the two microalgae was assessed using both the paper disc diffusion and microdilution methods. This last was used in order to evaluate the minimum inhibitory concentrations (MIC) and minimum algicidal concentrations (MAC). Results showed that the growth of both microalgae was significantly inhibited by all MEA extracts. Myriophyllum spicatum organic extract shows the highest growth inhibition activity against M. aeruginosa (35.33 ± 1.53) and Chlorella sp. (30.33 ± 1.15 mm). This stronger inhibitory activity was confirmed by the low MIC (6.25, 12.5 mg/L) and MAC (6.25, 12.5 mg/L) values. Furthermore, results showed different sensitivity between the prokaryotic and eukaryotic microalgae into MEA extracts. Based on the MIC and MAC values, we can distinguish two groups of plants. The first one, including M. spicatum, Ranunculus aquatilis, and Enteromorpha sp., can be considered as a preferable anti-prokaryotic group with a stronger inhibitory activity on M. aeruginosa growth. The second group, constituted by Potamogeton natans, Nasturtium officinale, Elodea sp., and Ceratophyllum sp., has a preferable and stronger inhibitory effect against eukaryotic algae (Chlorella sp.). Overall the results reveal the potential algicidal activity of macrophytes and suggested that MEA extracts could play an important role in biocontrol of HABs.


Assuntos
Chlorella , Cianobactérias , Microalgas , Microcystis , Proliferação Nociva de Algas
6.
Environ Monit Assess ; 189(1): 39, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28025806

RESUMO

Aguelmam Azizgza (LAZ) and Dayet Afourgah (DAF) are two Moroccan natural lakes located in a humid hydrographic basin of the Middle Atlas Mountains. Both are considered important reservoirs of plant and animal biodiversity. In addition, they are extensively used for recreational and fishing activities and as a water source for irrigation of agricultural crops. Recurrent cyanobacteria scum episodes in the two water bodies have been reported, Microcystis being the main genus in the scums. Here, we report on the toxic potential of three Microcystis aeruginosa strains isolated from those lakes: Mic LAZ and Mic B7 from LAZ and Mic DAF isolated from DAF. The toxic potential was checked by their microcystin (MC) content and the presence of mcy genes involved in MC synthesis. The identification and quantification of MC variants were performed by high-performance liquid chromatography-photo-diode array. The detection of mcy genes was achieved by whole-cell multiplex PCR that allowed the simultaneous amplification of DNA sequences corresponding to specific mcy regions. MC content of cultured cells, as MC-LR equivalents per gram cell biomass, was slightly higher in Mic LAZ (ca. 860) than in Mic B7 (ca. 700) and Mic DAF (ca. 690). Four MC variants were identified in the three isolates: MC-WR, MC-RR, MC-DM-WR, and MC-YR. The presence of toxic Microcystis strains in the two studied lakes may be regarded as an environmental and health hazard, especially during periods of bloom proliferation. It would be recommended the use of two complementary techniques, as those utilized herein (HPLC and mcy detection) to alert on highly probable toxicity of such lakes.


Assuntos
Lagos/microbiologia , Microcistinas/análise , Microcystis/isolamento & purificação , Poluentes da Água/análise , Animais , Biomassa , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/química , Microcistinas/química , Microcistinas/genética , Microcystis/genética , Marrocos , Qualidade da Água
7.
Environ Toxicol ; 17(1): 24-31, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11847971

RESUMO

In the Lake Oued Mellah cyanobacteria waterblooms occur periodically in late spring and summer with Microcystis ichthyoblabe as the main bloom-forming species. In 1999, a heavy waterbloom of M. ichthyoblabe occurred during May June with a maximal biomass of 298 mg/l. During this period, several bloom samples were collected. The toxicity assessment was done by mouse and brine shrimp (Artemia) bioassays. Apart from the sample collected on 15/06/1999, all the other samples were toxic by mouse bioassay. The LD50 determined by intraperitoneal injection to mice during active cyanobacterial growth and decline phases were 518 and 1924 mgDW/kg respectively. Using Artemia bioassay, the 24hLC50 varied from 6.0 to 40.6 mg/ml and the 48hLC50 ranged from 2.8 to 18.2 mg/ml. The separation and identification of microcystin variants was performed by high performance liquid chromatography-photodiode array detection. Eleven toxins were separated and preliminarily identified as microcystin variants as they exhibit a typical UV spectra like the microcystin-LR standard. The quantification of total microcystins determined by enzyme-linked immunosorbent assay showed that the contents were varied between 0.1 and 0.76 microgram/g DW.


Assuntos
Inibidores Enzimáticos/toxicidade , Eutrofização , Microcystis , Peptídeos Cíclicos/toxicidade , Animais , Artemia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/isolamento & purificação , Dose Letal Mediana , Masculino , Toxinas Marinhas , Camundongos , Microcistinas , Peptídeos Cíclicos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...