Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(21): 210501, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883142

RESUMO

We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

2.
Opt Express ; 23(6): 7300-11, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837073

RESUMO

We present and demonstrate a novel protocol for distributing secret keys between two and only two parties based on N-party single-qubit Quantum Secret Sharing (QSS). We demonstrate our new protocol with N = 3 parties using phase-encoded photons. We show that any two out of N parties can build a secret key based on partial information from each other and with collaboration from the remaining N - 2 parties. Our implementation allows for an accessible transition between N-party QSS and arbitrary two party QKD without modification of hardware. In addition, our approach significantly reduces the number of resources such as single photon detectors, lasers and dark fiber connections needed to implement QKD.

3.
Phys Rev Lett ; 91(1): 010401, 2003 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-12906520

RESUMO

We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996)]] and in cavity QED [Nature (London) 403, 743 (2000)]]. The values of the Wigner functions of the underlying states at the origin of phase space are W(|0>)(0)=+1.75 for the vibrational ground state and W(|1>)(0)=-1.4 for the one-photon number state. We generalize this method to wave packets in arbitrary potentials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...