Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693911

RESUMO

Modeling the rate at which adaptive phenotypes appear in a population is a key to predicting evolutionary processes. Given random mutations, should this rate be modeled by a simple Poisson process, or is a more complex dynamics needed? Here we use analytic calculations and simulations of evolving populations on explicit genotype-phenotype maps to show that the introduction of novel phenotypes can be "bursty" or overdispersed. In other words, a novel phenotype either appears multiple times in quick succession or not at all for many generations. These bursts are fundamentally caused by statistical fluctuations and other structure in the map from genotypes to phenotypes. Their strength depends on population parameters, being highest for "monomorphic" populations with low mutation rates. They can also be enhanced by additional inhomogeneities in the mapping from genotypes to phenotypes. We mainly investigate the effect of bursts using the well-studied genotype-phenotype map for RNA secondary structure, but find similar behavior in a lattice protein model and in Richard Dawkins's biomorphs model of morphological development. Bursts can profoundly affect adaptive dynamics. Most notably, they imply that fitness differences play a smaller role in determining which phenotype fixes than would be the case for a Poisson process without bursts.


Assuntos
Modelos Genéticos , Fenótipo , Genótipo , Simulação por Computador , Adaptação Fisiológica/genética , Evolução Molecular , Mutação , Evolução Biológica , Distribuição de Poisson , RNA/genética , Adaptação Biológica/genética
2.
Entropy (Basel) ; 26(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785675

RESUMO

Arguments inspired by algorithmic information theory predict an inverse relation between the probability and complexity of output patterns in a wide range of input-output maps. This phenomenon is known as simplicity bias. By viewing the parameters of dynamical systems as inputs, and the resulting (digitised) trajectories as outputs, we study simplicity bias in the logistic map, Gauss map, sine map, Bernoulli map, and tent map. We find that the logistic map, Gauss map, and sine map all exhibit simplicity bias upon sampling of map initial values and parameter values, but the Bernoulli map and tent map do not. The simplicity bias upper bound on the output pattern probability is used to make a priori predictions regarding the probability of output patterns. In some cases, the predictions are surprisingly accurate, given that almost no details of the underlying dynamical systems are assumed. More generally, we argue that studying probability-complexity relationships may be a useful tool when studying patterns in dynamical systems.

3.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497475

RESUMO

We introduce oxNA, a new model for the simulation of DNA-RNA hybrids that is based on two previously developed coarse-grained models-oxDNA and oxRNA. The model naturally reproduces the physical properties of hybrid duplexes, including their structure, persistence length, and force-extension characteristics. By parameterizing the DNA-RNA hydrogen bonding interaction, we fit the model's thermodynamic properties to experimental data using both average-sequence and sequence-dependent parameters. To demonstrate the model's applicability, we provide three examples of its use-calculating the free energy profiles of hybrid strand displacement reactions, studying the resolution of a short R-loop, and simulating RNA-scaffolded wireframe origami.


Assuntos
DNA , RNA , RNA/química , Conformação de Ácido Nucleico , DNA/química , Simulação de Dinâmica Molecular , Software
4.
PLoS Comput Biol ; 20(3): e1011893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536880

RESUMO

Biomorphs, Richard Dawkins's iconic model of morphological evolution, are traditionally used to demonstrate the power of natural selection to generate biological order from random mutations. Here we show that biomorphs can also be used to illustrate how developmental bias shapes adaptive evolutionary outcomes. In particular, we find that biomorphs exhibit phenotype bias, a type of developmental bias where certain phenotypes can be many orders of magnitude more likely than others to appear through random mutations. Moreover, this bias exhibits a strong preference for simpler phenotypes with low descriptional complexity. Such bias towards simplicity is formalised by an information-theoretic principle that can be intuitively understood from a picture of evolution randomly searching in the space of algorithms. By using population genetics simulations, we demonstrate how moderately adaptive phenotypic variation that appears more frequently upon random mutations can fix at the expense of more highly adaptive biomorph phenotypes that are less frequent. This result, as well as many other patterns found in the structure of variation for the biomorphs, such as high mutational robustness and a positive correlation between phenotype evolvability and robustness, closely resemble findings in molecular genotype-phenotype maps. Many of these patterns can be explained with an analytic model based on constrained and unconstrained sections of the genome. We postulate that the phenotype bias towards simplicity and other patterns biomorphs share with molecular genotype-phenotype maps may hold more widely for developmental systems.


Assuntos
Genética Populacional , Seleção Genética , Genótipo , Fenótipo , Mutação , Evolução Biológica , Evolução Molecular , Modelos Genéticos
5.
J R Soc Interface ; 20(204): 20230169, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491910

RESUMO

Phenotype robustness, defined as the average mutational robustness of all the genotypes that map to a given phenotype, plays a key role in facilitating neutral exploration of novel phenotypic variation by an evolving population. By applying results from coding theory, we prove that the maximum phenotype robustness occurs when genotypes are organized as bricklayer's graphs, so-called because they resemble the way in which a bricklayer would fill in a Hamming graph. The value of the maximal robustness is given by a fractal continuous everywhere but differentiable nowhere sums-of-digits function from number theory. Interestingly, genotype-phenotype maps for RNA secondary structure and the hydrophobic-polar (HP) model for protein folding can exhibit phenotype robustness that exactly attains this upper bound. By exploiting properties of the sums-of-digits function, we prove a lower bound on the deviation of the maximum robustness of phenotypes with multiple neutral components from the bricklayer's graph bound, and show that RNA secondary structure phenotypes obey this bound. Finally, we show how robustness changes when phenotypes are coarse-grained and derive a formula and associated bounds for the transition probabilities between such phenotypes.


Assuntos
Evolução Molecular , Modelos Genéticos , Genótipo , Fenótipo , Mutação , RNA/genética
6.
Methods Mol Biol ; 2639: 93-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166713

RESUMO

This chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.


Assuntos
DNA , Simulação de Dinâmica Molecular
7.
Phys Rev E ; 107(1-1): 014126, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797942

RESUMO

Across many problems in science and engineering, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we investigate the glassy phase of ±J spin glasses at zero temperature by calculating the robustness of the ground states to flips in the sign of single interactions. For random graphs and the Sherrington-Kirkpatrick model, we find relatively large sets of bond configurations that generate the same ground state. These sets can themselves be analyzed as subgraphs of the interaction domain, and we compute many of their topological properties. In particular, we find that the robustness, equivalent to the average degree, of these subgraphs is much higher than one would expect from a random model. Most notably, it scales in the same logarithmic way with the size of the subgraph as has been found in genotype-phenotype maps for RNA secondary structure folding, protein quaternary structure, gene regulatory networks, as well as for models for genetic programming. The similarity between these disparate systems suggests that this scaling may have a more universal origin.

8.
ACS Nano ; 17(6): 5387-5398, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36763807

RESUMO

The design space for self-assembled multicomponent objects ranges from a solution in which every building block is unique to one with the minimum number of distinct building blocks that unambiguously define the target structure. We develop a pipeline to explore the design spaces for a set of structures of various sizes and complexities. To understand the implications of the different solutions, we analyze their assembly dynamics using patchy particle simulations and study the influence of the number of distinct building blocks, and the angular and spatial tolerances on their interactions, on the kinetics and yield of the target assembly. We show that the resource-saving solution with a minimum number of distinct blocks can often assemble just as well (or faster) than designs where each building block is unique. We further use our methods to design multifarious structures, where building blocks are shared between different target structures. Finally, we use coarse-grained DNA simulations to investigate the realization of multicomponent shapes using DNA nanostructures as building blocks.

9.
J R Soc Interface ; 19(197): 20220694, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36514888

RESUMO

Unravelling the structure of genotype-phenotype (GP) maps is an important problem in biology. Recently, arguments inspired by algorithmic information theory (AIT) and Kolmogorov complexity have been invoked to uncover simplicity bias in GP maps, an exponentially decaying upper bound in phenotype probability with the increasing phenotype descriptional complexity. This means that phenotypes with many genotypes assigned via the GP map must be simple, while complex phenotypes must have few genotypes assigned. Here, we use similar arguments to bound the probability P(x → y) that phenotype x, upon random genetic mutation, transitions to phenotype y. The bound is [Formula: see text], where [Formula: see text] is the estimated conditional complexity of y given x, quantifying how much extra information is required to make y given access to x. This upper bound is related to the conditional form of algorithmic probability from AIT. We demonstrate the practical applicability of our derived bound by predicting phenotype transition probabilities (and other related quantities) in simulations of RNA and protein secondary structures. Our work contributes to a general mathematical understanding of GP maps and may facilitate the prediction of transition probabilities directly from examining phenotype themselves, without utilizing detailed knowledge of the GP map.


Assuntos
Teoria da Informação , Proteínas , Fenótipo , Genótipo , Mutação , Probabilidade , Modelos Genéticos
10.
Nat Ecol Evol ; 6(11): 1742-1752, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175543

RESUMO

Fitness landscapes are often described in terms of 'peaks' and 'valleys', indicating an intuitive low-dimensional landscape of the kind encountered in everyday experience. The space of genotypes, however, is extremely high dimensional, which results in counter-intuitive structural properties of genotype-phenotype maps. Here we show that these properties, such as the presence of pervasive neutral networks, make fitness landscapes navigable. For three biologically realistic genotype-phenotype map models-RNA secondary structure, protein tertiary structure and protein complexes-we find that, even under random fitness assignment, fitness maxima can be reached from almost any other phenotype without passing through fitness valleys. This in turn indicates that true fitness valleys are very rare. By considering evolutionary simulations between pairs of real examples of functional RNA sequences, we show that accessible paths are also likely to be used under evolutionary dynamics. Our findings have broad implications for the prediction of natural evolutionary outcomes and for directed evolution.


Assuntos
Evolução Biológica , Modelos Genéticos , Fenótipo , Genótipo , RNA/genética
13.
Proc Natl Acad Sci U S A ; 119(11): e2113883119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275794

RESUMO

SignificanceWhy does evolution favor symmetric structures when they only represent a minute subset of all possible forms? Just as monkeys randomly typing into a computer language will preferentially produce outputs that can be generated by shorter algorithms, so the coding theorem from algorithmic information theory predicts that random mutations, when decoded by the process of development, preferentially produce phenotypes with shorter algorithmic descriptions. Since symmetric structures need less information to encode, they are much more likely to appear as potential variation. Combined with an arrival-of-the-frequent mechanism, this algorithmic bias predicts a much higher prevalence of low-complexity (high-symmetry) phenotypes than follows from natural selection alone and also explains patterns observed in protein complexes, RNA secondary structures, and a gene regulatory network.


Assuntos
Evolução Biológica , Teoria da Informação , Seleção Genética , Algoritmos , Redes Reguladoras de Genes , Fenótipo
14.
Nucleic Acids Res ; 50(5): 2480-2492, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188542

RESUMO

Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.


Assuntos
DNA Super-Helicoidal/química , Dímeros de Pirimidina , Timina , Dano ao DNA , Reparo do DNA , Conformação de Ácido Nucleico , Dímeros de Pirimidina/química , Raios Ultravioleta
15.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34542628

RESUMO

Morphospaces-representations of phenotypic characteristics-are often populated unevenly, leaving large parts unoccupied. Such patterns are typically ascribed to contingency, or else to natural selection disfavoring certain parts of the morphospace. The extent to which developmental bias, the tendency of certain phenotypes to preferentially appear as potential variation, also explains these patterns is hotly debated. Here we demonstrate quantitatively that developmental bias is the primary explanation for the occupation of the morphospace of RNA secondary structure (SS) shapes. Upon random mutations, some RNA SS shapes (the frequent ones) are much more likely to appear than others. By using the RNAshapes method to define coarse-grained SS classes, we can directly compare the frequencies that noncoding RNA SS shapes appear in the RNAcentral database to frequencies obtained upon a random sampling of sequences. We show that: 1) only the most frequent structures appear in nature; the vast majority of possible structures in the morphospace have not yet been explored; 2) remarkably small numbers of random sequences are needed to produce all the RNA SS shapes found in nature so far; and 3) perhaps most surprisingly, the natural frequencies are accurately predicted, over several orders of magnitude in variation, by the likelihood that structures appear upon a uniform random sampling of sequences. The ultimate cause of these patterns is not natural selection, but rather a strong phenotype bias in the RNA genotype-phenotype map, a type of developmental bias or "findability constraint," which limits evolutionary dynamics to a hugely reduced subset of structures that are easy to "find."


Assuntos
Evolução Biológica , RNA , Mutação , Fenótipo , RNA/genética , Seleção Genética
16.
Phys Life Rev ; 38: 55-106, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088608

RESUMO

Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes. Empirical evidence supporting the fundamental relevance of features such as phenotypic bias is mounting as well, while the synthesis of conceptual and experimental progress leads to questioning current assumptions on the nature of evolutionary dynamics-cancer progression models or synthetic biology approaches being notable examples. This work delves with a critical and constructive attitude into our current knowledge of how genotypes map onto molecular phenotypes and organismal functions, and discusses theoretical and empirical avenues to broaden and improve this comprehension. As a final goal, this community should aim at deriving an updated picture of evolutionary processes soundly relying on the structural properties of genotype spaces, as revealed by modern techniques of molecular and functional analysis.


Assuntos
Genótipo , Fenótipo
17.
J Chem Theory Comput ; 16(12): 7764-7775, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33147408

RESUMO

We present a new method for calculating internal forces in DNA structures using coarse-grained models and demonstrate its utility with the oxDNA model. The instantaneous forces on individual nucleotides are explored and related to model potentials, and using our framework, internal forces are calculated for two simple DNA systems and for a recently published nanoscopic force clamp. Our results highlight some pitfalls associated with conventional methods for estimating internal forces, which are based on elastic polymer models, and emphasize the importance of carefully considering secondary structure and ionic conditions when modeling the elastic behavior of single-stranded DNA. Beyond its relevance to the DNA nanotechnological community, we expect our approach to be broadly applicable to calculations of internal force in a variety of structures-from DNA to protein-and across other coarse-grained simulation models.


Assuntos
DNA de Cadeia Simples/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
18.
Angew Chem Int Ed Engl ; 59(37): 15942-15946, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32524699

RESUMO

DNA self-assembly allows the construction of nanometre-scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single-stranded loops embedded in a double-stranded DNA template and is programmed by a set of double-stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T-junctions formed by hybridization of single-stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T-junction origami motifs and that assembly can be performed at room temperature.

19.
Nat Commun ; 11(1): 2562, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444600

RESUMO

Recent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a mechanism for enhancing the thermodynamic drive of DNA strand-displacement reactions whilst barely perturbing forward reaction rates: the introduction of mismatches within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of non-equilibrium systems that rely on catalytic control and must be robust to leak reactions.


Assuntos
DNA/química , DNA/genética , Pareamento Incorreto de Bases , Cinética , Conformação de Ácido Nucleico , Termodinâmica
20.
Sci Rep ; 10(1): 4415, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157160

RESUMO

For a broad class of input-output maps, arguments based on the coding theorem from algorithmic information theory (AIT) predict that simple (low Kolmogorov complexity) outputs are exponentially more likely to occur upon uniform random sampling of inputs than complex outputs are. Here, we derive probability bounds that are based on the complexities of the inputs as well as the outputs, rather than just on the complexities of the outputs. The more that outputs deviate from the coding theorem bound, the lower the complexity of their inputs. Since the number of low complexity inputs is limited, this behaviour leads to an effective lower bound on the probability. Our new bounds are tested for an RNA sequence to structure map, a finite state transducer and a perceptron. The success of these new methods opens avenues for AIT to be more widely used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...