Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(2): e202302713, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37772346

RESUMO

The reactivity of sydnones and sydnonimines toward terminal alkynes under copper catalysis has been explored using High-Throughput-Experimentation. A large panel of ligands and reaction conditions have been tested to optimize the copper-catalyzed sydnone click reaction discovered by our group ten years ago. This screening approach led to the identification of new ligands, which boosted the catalytic properties of copper and allowed the discovery of a new copper-catalyzed click-and-release reaction involving sydnonimines. This reaction allowed chemoselective ligation of terminal alkynes with sydnonimines and, simultaneously, the release of an isocyanate fragment molecule that can be used for further transformations.

2.
Neurobiol Pain ; 13: 100120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816616

RESUMO

Despite the high prevalence of chronic pain as a disease in our society, there is a lack of effective treatment options for patients living with this condition. Gene therapies using recombinant AAVs are a direct method to selectively express genes of interest in target cells with the potential of, in the case of nociceptors, reducing neuronal firing in pain conditions. We designed a recombinant AAV vector expressing cargos whose expression was driven by a portion of the SCN10A (NaV1.8) promoter, which is predominantly active in nociceptors. We validated its specificity for nociceptors in mouse and human dorsal root ganglia and showed that it can drive the expression of functional proteins. Our viral vector and promoter package drove the expression of both excitatory or inhibitory DREADDs in primary human DRG cultures and in whole cell electrophysiology experiments, increased or decreased neuronal firing, respectively. Taken together, we present a novel viral tool that drives expression of cargo specifically in human nociceptors. This will allow for future specific studies of human nociceptor properties as well as pave the way for potential future gene therapies for chronic pain.

3.
Cell Rep ; 42(1): 112010, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36656715

RESUMO

Neuropathic pain is a debilitating condition resulting from damage to the nervous system. Imbalance of spinal excitation and inhibition has been proposed to contribute to neuropathic pain. However, the structural basis of this imbalance remains unknown. Using a preclinical model of neuropathic pain, we show that microglia selectively engulf spinal synapses that are formed by central neurons and spare those of peripheral sensory neurons. Furthermore, we reveal that removal of inhibitory and excitatory synapses exhibits distinct temporal patterns, in which microglia-mediated inhibitory synapse removal precedes excitatory synapse removal. We also find selective and gradual increase in complement depositions on dorsal horn synapses that corresponds to the temporal pattern of microglial synapse pruning activity and type-specific synapse loss. Together, these results define a specific role for microglia in the progression of neuropathic pain pathogenesis and implicate these immune cells in structural remodeling of dorsal horn circuitry.


Assuntos
Microglia , Neuralgia , Humanos , Microglia/patologia , Neuralgia/patologia , Corno Dorsal da Medula Espinal/patologia , Sinapses/patologia , Medula Espinal/patologia
4.
Chem Commun (Camb) ; 58(61): 8500-8503, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35797662

RESUMO

Herein, we describe a methodology for iminosydnone chlorination and we demonstrate the high beneficial effect of this modification on the reactivity of these mesoionic dipoles in strain-promoted cycloaddition reactions. Exploiting their reaction with cyclooctynes, we used these new iminosydnones for bioorthogonal release of amide, urea and sulfonamide containing drugs. Notably, drugs containing a terminal amide function were released for the first time with good kinetic constants.


Assuntos
Amidas , Halogenação , Reação de Cicloadição , Sulfonamidas , Ureia
5.
Nat Med ; 20(10): 1165-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25216639

RESUMO

Neurons have an important role in retinal vascular development. Here we show that the G protein-coupled receptor (GPCR) coagulation factor II receptor-like 1 (F2rl1, previously known as Par2) is abundant in retinal ganglion cells and is associated with new blood vessel formation during retinal development and in ischemic retinopathy. After stimulation, F2rl1 in retinal ganglion cells translocates from the plasma membrane to the cell nucleus using a microtubule-dependent shuttle that requires sorting nexin 11 (Snx11). At the nucleus, F2rl1 facilitates recruitment of the transcription factor Sp1 to trigger Vegfa expression and, in turn, neovascularization. In contrast, classical plasma membrane activation of F2rl1 leads to the expression of distinct genes, including Ang1, that are involved in vessel maturation. Mutant versions of F2rl1 that prevent nuclear relocalization but not plasma membrane activation interfere with Vegfa but not Ang1 expression. Complementary angiogenic factors are therefore regulated by the subcellular localization of a receptor (F2rl1) that governs angiogenesis. These findings may have implications for the selectivity of drug actions based on the subcellular distribution of their targets.


Assuntos
Neovascularização Fisiológica , Neurônios/metabolismo , Receptor PAR-2/metabolismo , Transporte Ativo do Núcleo Celular , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neovascularização Patológica , Neovascularização Fisiológica/genética , Regiões Promotoras Genéticas , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Células Ganglionares da Retina/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/metabolismo , Nexinas de Classificação/metabolismo , Fator de Transcrição Sp1/metabolismo , Frações Subcelulares/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Mol Pain ; 10: 57, 2014 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-25189404

RESUMO

Inhibitory interneurons are an important component of dorsal horn circuitry where they serve to modulate spinal nociception. There is now considerable evidence indicating that reduced inhibition in the spinal dorsal horn contributes to neuropathic pain. A loss of these inhibitory neurons after nerve injury is one of the mechanisms being proposed to account for reduced inhibition; however, this remains controversial. This is in part because previous studies have focused on global measurements of inhibitory neurons without assessing the number of inhibitory synapses. To address this, we conducted a quantitative analysis of the spatial and temporal changes in the number of inhibitory terminals, as detected by glutamic acid decarboxylase 65 (GAD65) immunoreactivity, in the superficial dorsal horn of the spinal cord following a chronic constriction injury (CCI) to the sciatic nerve in rats. Isolectin B4 (IB4) labelling was used to define the location within the dorsal horn directly affected by the injury to the peripheral nerve. The density of GAD65 inhibitory terminals was reduced in lamina I (LI) and lamina II (LII) of the spinal cord after injury. The loss of GAD65 terminals was greatest in LII with the highest drop occurring around 3-4 weeks and a partial recovery by 56 days. The time course of changes in the number of GAD65 terminals correlated well with both the loss of IB4 labeling and with the altered thresholds to mechanical and thermal stimuli. Our detailed analysis of GAD65+ inhibitory terminals clearly revealed that nerve injury induced a transient loss of GAD65 immunoreactive terminals and suggests a potential involvement for these alterations in the development and amelioration of pain behaviour.


Assuntos
Glutamato Descarboxilase/metabolismo , Inibição Neural/fisiologia , Células do Corno Posterior/enzimologia , Neuropatia Ciática/patologia , Corno Dorsal da Medula Espinal/patologia , Análise de Variância , Animais , Modelos Animais de Doenças , Lateralidade Funcional/fisiologia , Hiperalgesia/etiologia , Lectinas/metabolismo , Masculino , Ratos , Ratos Wistar , Neuropatia Ciática/complicações , Fatores de Tempo
7.
J Neurosci ; 34(24): 8300-17, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920633

RESUMO

Whereas both GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) play a role in control of dorsal horn neuron excitability, their relative contribution to inhibition of small diameter primary afferent terminals remains controversial. To address this, we designed an approach for quantitative analyses of the distribution of GABA(A)R-subunits, GlyR α1-subunit and their anchoring protein, gephyrin, on terminals of rat spinal sensory afferents identified by Calcitonin-Gene-Related-Peptide (CGRP) for peptidergic terminals, and by Isolectin-B4 (IB4) for nonpeptidergic terminals. The approach was designed for light microscopy, which is compatible with the mild fixation conditions necessary for immunodetection of several of these antigens. An algorithm was designed to recognize structures with dimensions similar to those of the microscope resolution. To avoid detecting false colocalization, the latter was considered significant only if the degree of pixel overlap exceeded that expected from randomly overlapping pixels given a hypergeometric distribution. We found that both CGRP(+) and IB4(+) terminals were devoid of GlyR α1-subunit and gephyrin. The α1 GABA(A)R was also absent from these terminals. In contrast, the GABA(A)R α2/α3/α5 and ß3 subunits were significantly expressed in both terminal types, as were other GABA(A)R-associated-proteins (α-Dystroglycan/Neuroligin-2/Collybistin-2). Ultrastructural immunocytochemistry confirmed the presence of GABA(A)R ß3 subunits in small afferent terminals. Real-time quantitative PCR (qRT-PCR) confirmed the results of light microscopy immunochemical analysis. These results indicate that dorsal horn inhibitory synapses follow different rules of organization at presynaptic versus postsynaptic sites (nociceptive afferent terminals vs inhibitory synapses on dorsal horn neurons). The absence of gephyrin clusters from primary afferent terminals suggests a more diffuse mode of GABA(A)-mediated transmission at presynaptic than at postsynaptic sites.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Aferentes/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Lectinas/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Glicina/metabolismo
8.
J Comp Neurol ; 508(4): 592-604, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18383051

RESUMO

In this study, we investigated postnatal changes in Rexed's laminae and distribution of nociceptive afferents in the dorsal horn of the rat lumbar spinal cord at postnatal days 0, 5, 10, 15, 20, and 60. Transverse sections of the L4-L5 segments were processed for triple labeling with isolectin B4 (IB4)-binding as a marker of nonpeptidergic C-fibers, calcitonin gene-related peptide (CGRP) immunoreactivity to label peptidergic nociceptive afferents, and a fluorescent Nissl stain to visualize cells and lamination at different stages of postnatal development. The Nissl staining revealed that the thickness of lamina I (LI) and outer lamina II remained mostly unchanged from birth until adulthood. CGRP afferents terminated mostly in LI and the outer two-thirds of lamina II, whereas the termination area of fibers binding IB4 was centered on the middle one-third of lamina II at all ages studied. In absolute values, the overall width of the bands of intense CGRP and IB4 labeling increased with age but decreased as a percentage of the overall thickness of the dorsal horn with maturation. The overlap of CGRP termination area with that of IB4 afferents increased with age. The consequences of these findings are twofold. First, the size of the different laminae does not grow evenly across the dorsal horn. Second, CGRP and IB4 labeling cannot be considered per se to be reliable markers of lamination during development. These findings have implications for comparing data obtained in immature and mature tissues with respect to localization of structures in the dorsal horn.


Assuntos
Neurônios Aferentes/fisiologia , Nociceptores/crescimento & desenvolvimento , Células do Corno Posterior/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Biomarcadores/química , Masculino , Fibras Nervosas Amielínicas/química , Fibras Nervosas Amielínicas/fisiologia , Neurônios Aferentes/química , Nociceptores/química , Células do Corno Posterior/química , Ratos , Ratos Sprague-Dawley
9.
J Comp Neurol ; 469(1): 83-95, 2004 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-14689474

RESUMO

The sympathetic division of the autonomic nervous system is known to play a role in the genesis of neuropathic pain. In the skin of the rat lower lip (hairy skin), sympathetic and parasympathetic fibers normally innervate the same blood vessels in the lower dermis but do not occur in the upper dermis. However, we have shown that sympathetic fiber migration into the upper dermis occurs following mental nerve lesions (Ruocco et al. [2000] J. Comp. Neurol. 422:287-296). As sensory denervation has a dramatic effect on sympathetic fiber innervation patterns in the rat lower lip skin, we decided to investigate the possible changes in the other autonomic fiber type in the skin-the parasympathetic fiber. Sensory denervation of the rat lower lip was achieved by bilateral transection of the mental nerve, and animals were allowed to recover for 1-8 weeks. Lower lip tissue was processed for double-labeling light microscopic immunocytochemistry (ICC), using antibodies against substance P (SP), which labels a subpopulation of peptidergic sensory fibers, and against the vesicular acetycholine transporter (VAChT), as a marker for parasympathetic fibers. In sham-operated rats, SP-immunoreactive (IR) sensory fibers were found in the epidermis and upper and lower dermal regions, whereas VAChT-IR fibers were confined to the lower dermis. Mental nerve lesions induced the gradual disappearance of SP-IR fibers from all skin layers accompanied by the progressive migration of VAChT-IR fibers into the upper dermis. Cholinergic fiber migration was evident by the second week post surgery, and the ectopic innervation of the upper dermis by these fibers persisted even at the last time point studied (8 weeks) when SP-IR fibers have completely regrown. VAChT-IR fibers were observed in the upper dermis, well above the opening of the sebaceous glands into the hair follicles. These results show that considerable changes occur in the innervation patterns of parasympathetic fibers following mental nerve lesions.


Assuntos
Derme/inervação , Lábio/inervação , Parassimpatectomia/métodos , Fibras Parassimpáticas Pós-Ganglionares/fisiologia , Fibras Parassimpáticas Pós-Ganglionares/cirurgia , Animais , Derme/fisiologia , Lábio/fisiologia , Masculino , Ratos , Ratos Wistar , Pele/inervação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA