Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572036

RESUMO

Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.


Assuntos
Modelos Animais de Doenças , Drosophila/fisiologia , Genitália Masculina/patologia , Neoplasias da Próstata/patologia , Animais , Humanos , Masculino
2.
Nat Commun ; 11(1): 2300, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385236

RESUMO

One of the most important but less understood step of epithelial tumourigenesis occurs when cells acquire the ability to leave their epithelial compartment. This phenomenon, described as basal epithelial cell extrusion (basal extrusion), represents the first step of tumour invasion. However, due to lack of adequate in vivo model, implication of emblematic signalling pathways such as Ras/Mitogen-Activated Protein Kinase (MAPK) and phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathways, is scarcely described in this phenomenon. We have developed a unique model of basal extrusion in the Drosophila accessory gland. There, we demonstrate that both Ras/MAPK and PI3K/AKT/mTOR pathways are necessary for basal extrusion. Furthermore, as in prostate cancer, we show that these pathways are co-activated. This occurs through set up of Epidermal Growth Factor Receptor (EGFR) and Insulin Receptor (InR) dependent autocrine loops, a phenomenon that, considering human data, could be relevant for prostate cancer.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Drosophila , Glândulas Exócrinas/metabolismo , Masculino , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia
3.
Cell Cycle ; 15(10): 1352-62, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27050906

RESUMO

The mammalian target of rapamycin (mTOR) plays essential roles in the regulation of growth-related processes such as protein synthesis, cell sizing and metabolism in both normal and pathological growing conditions. These functions of mTOR are thought to be largely a consequence of its cytoplasmic activity in regulating translation rate, but accumulating data highlight supplementary role(s) for this serine/threonine kinase within the nucleus. Indeed, the nuclear activities of mTOR are currently associated with the control of protein biosynthetic capacity through its ability to regulate the expression of gene products involved in the control of ribosomal biogenesis and proliferation. Using primary murine embryo fibroblasts (MEFs), we observed that cells with overactive mTOR signaling displayed higher abundance for the growth-associated Npm1 protein, in what represents a novel mechanism of Npm1 gene regulation. We show that Npm1 gene expression is dependent on mTOR as demonstrated by treatment of wild-type and Pten inactivated MEFs cultured with rapamycin or by transient transfections of small interfering RNA directed against mTOR. In accordance, the mTOR kinase localizes to the Npm1 promoter gene in vivo and it enhances the activity of a human NPM1-luciferase reporter gene providing an opportunity for direct control. Interestingly, rapamycin did not dislodge mTOR from the Npm1 promoter but rather strongly destabilized the Npm1 transcript by increasing its turnover. Using a prostate-specific Pten-deleted mouse model of cancer, Npm1 mRNA levels were found up-regulated and sensitive to rapamycin. Finally, we also showed that Npm1 is required to promote mTOR-dependent cell proliferation. We therefore proposed a model whereby mTOR is closely involved in the transcriptional and posttranscriptional regulation of Npm1 gene expression with implications in development and diseases including cancer.


Assuntos
Proteínas Nucleares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Nucleofosmina , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos
4.
PLoS One ; 9(5): e96293, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24796332

RESUMO

The chaperone nucleophosmin (NPM1) is over-expressed in the epithelial compartment of prostate tumours compared to adjacent healthy epithelium and may represent one of the key actors that support the neoplastic phenotype of prostate adenocarcinoma cells. Yet, the mechanisms that underlie NPM1 mediated phenotype remain elusive in the prostate. To better understand NPM1 functions in prostate cancer cells, we sought to characterize its impact on prostate cancer cells behaviour and decipher the mechanisms by which it may act. Here we show that NPM1 favors prostate tumour cell migration, invasion and colony forming. Furthermore, knockdown of NPM1 leads to a decrease in the growth of LNCaP-derived tumours grafted in Nude mice in vivo. Such oncogenic-like properties are found in conjunction with a positive regulation of NPM1 on the ERK1/2 (Extracellular signal-Regulated Kinases 1/2) kinase phosphorylation in response to EGF (Epidermal Growth Factor) stimulus, which is critical for prostate cancer progression following the setting of an autonomous production of the growth factor. NPM1 could then be a target to switch off specifically ERK1/2 pathway activation in order to decrease or inhibit cancer cell growth and migration.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Nucleares/fisiologia , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Nus , Invasividade Neoplásica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
5.
Dev Biol ; 390(2): 231-46, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24662046

RESUMO

The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface.


Assuntos
Evolução Biológica , Movimento Celular/fisiologia , Ectoderma/fisiologia , Hipofaringe/embriologia , Mesoderma/fisiologia , Morfogênese/fisiologia , Vertebrados/embriologia , Animais , Eletroporação , Cabeça/anatomia & histologia , Cabeça/embriologia , Imuno-Histoquímica , Hibridização In Situ , Microcirurgia , Crista Neural/fisiologia , Especificidade da Espécie , Tronco/anatomia & histologia , Tronco/embriologia
6.
PLoS One ; 8(3): e58876, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554947

RESUMO

Recent studies underline the implication of Liver X Receptors (LXRs) in several prostate diseases such as benign prostatic hyperplasia (BPH) and prostate cancer. In order to understand the molecular mechanisms involved, we derived epithelial cells from dorsal prostate (MPECs) of wild type (WT) or Lxrαß-/- mice. In the WT MPECs, our results show that LXR activation reduces proliferation and correlates with the modification of the AKT-survival pathway. Moreover, LXRs regulate lipid homeostasis with the regulation of Abca1, Abcg1 and Idol, and, in a lesser extent, Srebp1, Fas and Acc. Conversely cells derived from Lxrαß-/- mice show a higher basal phosphorylation and consequently activation of the survival/proliferation transduction pathways AKT and MAPK. Altogether, our data point out that the cell model we developed allows deciphering the molecular mechanisms inducing the cell cycle arrest. Besides, we show that activated LXRs regulate AKT and MAPK transduction pathways and demonstrate that LXRs could be good pharmacological targets in prostate disease such as cancer.


Assuntos
Células Epiteliais/metabolismo , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , Próstata/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Ordem dos Genes , Marcação de Genes , Genótipo , Homeostase/genética , Metabolismo dos Lipídeos/genética , Receptores X do Fígado , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...