Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(36): e2210433119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037376

RESUMO

The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison (Bison bison) in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle (Bos taurus). Compared to ungrazed areas, reintroducing bison increased native plant species richness by 103% at local scales (10 m2) and 86% at the catchment scale. Gains in richness continued for 29 y and were resilient to the most extreme drought in four decades. These gains are now among the largest recorded increases in species richness due to grazing in grasslands globally. Grazing by domestic cattle also increased native plant species richness, but by less than half as much as bison. This study indicates that some ecosystems maintain a latent potential for increased native plant species richness following the reintroduction of native herbivores, which was unmatched by domesticated grazers. Native-grazer gains in richness were resilient to an extreme drought, a pressure likely to become more common under future global environmental change.


Assuntos
Biodiversidade , Bison , Pradaria , Animais , Bovinos , Plantas
3.
Ecology ; 103(4): e3649, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35084743

RESUMO

Diverse communities of large mammalian herbivores (LMH), once widespread, are now rare. LMH exert strong direct and indirect effects on community structure and ecosystem functions, and measuring these effects is important for testing ecological theory and for understanding past, current, and future environmental change. This in turn requires long-term experimental manipulations, owing to the slow and often nonlinear responses of populations and assemblages to LMH removal. Moreover, the effects of particular species or body-size classes within diverse LMH guilds are difficult to pinpoint, and the magnitude and even direction of these effects often depends on environmental context. Since 2008, we have maintained the Ungulate Herbivory Under Rainfall Uncertainty (UHURU) experiment, a series of size-selective LMH exclosures replicated across a rainfall/productivity gradient in a semiarid Kenyan savanna. The goals of the UHURU experiment are to measure the effects of removing successively smaller size classes of LMH (mimicking the process of size-biased extirpation) and to establish how these effects are shaped by spatial and temporal variation in rainfall. The UHURU experiment comprises three LMH-exclusion treatments and an unfenced control, applied to nine randomized blocks of contiguous 1-ha plots (n = 36). The fenced treatments are MEGA (exclusion of megaherbivores, elephant and giraffe), MESO (exclusion of herbivores ≥40 kg), and TOTAL (exclusion of herbivores ≥5 kg). Each block is replicated three times at three sites across the 20-km rainfall gradient, which has fluctuated over the course of the experiment. The first 5 years of data were published previously (Ecological Archives E095-064) and have been used in numerous studies. Since that publication, we have (1) continued to collect data following the original protocols, (2) improved the taxonomic resolution and accuracy of plant and small-mammal identifications, and (3) begun collecting several new data sets. Here, we present updated and extended raw data from the first 12 years of the UHURU experiment (2008-2019). Data include daily rainfall data throughout the experiment; annual surveys of understory plant communities; annual censuses of woody-plant communities; annual measurements of individually tagged woody plants; monthly monitoring of flowering and fruiting phenology; every-other-month small-mammal mark-recapture data; and quarterly large-mammal dung surveys. There are no copyright restrictions; notification of when and how data are used is appreciated and users of UHURU data should cite this data paper when using the data.


Assuntos
Ecossistema , Herbivoria , Animais , Pradaria , Herbivoria/fisiologia , Quênia , Mamíferos
4.
Trends Ecol Evol ; 36(10): 931-942, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34275657

RESUMO

While we know climate change will impact individuals, populations, and communities, we lack a cross-scale synthesis for understanding global variation in climate change impacts and predicting their ecological effects. Studies of latitudinal variation in individuals' thermal responses have developed primarily in isolation from studies of natural populations' warming responses. Further, it is unclear whether latitudinal variation in temperature-dependent population responses will manifest into latitudinal patterns in community stability. Integrating across scales, we discuss the key drivers of latitudinal variation in climate change effects, with the goal of identifying key pieces of information necessary to predict warming effects in natural communities. We propose two experimental approaches synthesizing latitudinal variability in climate change impacts across scales of biological organization.


Assuntos
Mudança Climática , Humanos , Temperatura
5.
PLoS One ; 16(3): e0247290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657137

RESUMO

Impacts of climate change can differ substantially across species' geographic ranges, and impacts on a given population can be difficult to predict accurately. A commonly used approximation for the impacts of climate change on the population growth rate is the product of local changes in each climate variable (which may differ among populations) and the sensitivity (the derivative of the population growth rate with respect to that climate variable), summed across climate variables. However, this approximation may not be accurate for predicting changes in population growth rate across geographic ranges, because the sensitivities to climate variables or the rate of climate change may differ among populations. In addition, while this approximation assumes a linear response of population growth rate to climate, population growth rate is typically a nonlinear function of climate variables. Here, we use climate-driven integral projection models combined with projections of future climate to predict changes in population growth rate from 2008 to 2099 for an uncommon alpine plant species, Douglasia alaskana, in a rapidly warming location, southcentral Alaska USA. We dissect the causes of among-population variation in climate change impacts, including magnitude of climate change in each population and nonlinearities in population response to climate change. We show that much of the variation in climate change impacts across D. alaskana's range arises from nonlinearities in population response to climate. Our results highlight the critical role of nonlinear responses to climate change impacts, suggesting that current responses to increases in temperature or changes in precipitation may not continue indefinitely under continued changes in climate. Further, our results suggest the degree of nonlinearity in climate responses and the shape of responses (e.g., convex or concave) can differ substantially across populations, such that populations may differ dramatically in responses to future climate even when their current responses are quite similar.


Assuntos
Mudança Climática , Modelos Biológicos , Primulaceae/crescimento & desenvolvimento , Alaska
6.
Proc Natl Acad Sci U S A ; 117(2): 1107-1112, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31888999

RESUMO

Multiple, simultaneous environmental changes, in climatic/abiotic factors, interacting species, and direct human influences, are impacting natural populations and thus biodiversity, ecosystem services, and evolutionary trajectories. Determining whether the magnitudes of the population impacts of abiotic, biotic, and anthropogenic drivers differ, accounting for their direct effects and effects mediated through other drivers, would allow us to better predict population fates and design mitigation strategies. We compiled 644 paired values of the population growth rate (λ) from high and low levels of an identified driver from demographic studies of terrestrial plants. Among abiotic drivers, natural disturbance (not climate), and among biotic drivers, interactions with neighboring plants had the strongest effects on λ However, when drivers were combined into the 3 main types, their average effects on λ did not differ. For the subset of studies that measured both the average and variability of the driver, λ was marginally more sensitive to 1 SD of change in abiotic drivers relative to biotic drivers, but sensitivity to biotic drivers was still substantial. Similar impact magnitudes for abiotic/biotic/anthropogenic drivers hold for plants of different growth forms, for different latitudinal zones, and for biomes characterized by harsher or milder abiotic conditions, suggesting that all 3 drivers have equivalent impacts across a variety of contexts. Thus, the best available information about the integrated effects of drivers on all demographic rates provides no justification for ignoring drivers of any of these 3 types when projecting ecological and evolutionary responses of populations and of biodiversity to environmental changes.


Assuntos
Biodiversidade , Mudança Climática , Desenvolvimento Vegetal , Crescimento Demográfico , Clima , Ecologia , Ecossistema , Humanos , Fenômenos Fisiológicos Vegetais , Plantas
7.
Ann N Y Acad Sci ; 1429(1): 31-49, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29752729

RESUMO

African savannas support an iconic fauna, but they are undergoing large-scale population declines and extinctions of large (>5 kg) mammals. Long-term, controlled, replicated experiments that explore the consequences of this defaunation (and its replacement with livestock) are rare. The Mpala Research Centre in Laikipia County, Kenya, hosts three such experiments, spanning two adjacent ecosystems and environmental gradients within them: the Kenya Long-Term Exclosure Experiment (KLEE; since 1995), the Glade Legacies and Defaunation Experiment (GLADE; since 1999), and the Ungulate Herbivory Under Rainfall Uncertainty experiment (UHURU; since 2008). Common themes unifying these experiments are (1) evidence of profound effects of large mammalian herbivores on herbaceous and woody plant communities; (2) competition and compensation across herbivore guilds, including rodents; and (3) trophic cascades and other indirect effects. We synthesize findings from the past two decades to highlight generalities and idiosyncrasies among these experiments, and highlight six lessons that we believe are pertinent for conservation. The removal of large mammalian herbivores has dramatic effects on the ecology of these ecosystems; their ability to rebound from these changes (after possible refaunation) remains unexplored.


Assuntos
Animais Selvagens , Conservação dos Recursos Naturais , Ecossistema , Herbivoria , África Oriental , Animais , Pradaria , Mamíferos , Simbiose
8.
Proc Natl Acad Sci U S A ; 115(3): 543-548, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284748

RESUMO

Predicting how species' abundances and ranges will shift in response to climate change requires a mechanistic understanding of how multiple factors interact to limit population growth. Both abiotic stress and species interactions can limit populations and potentially set range boundaries, but we have a poor understanding of when and where each is most critical. A commonly cited hypothesis, first proposed by Darwin, posits that abiotic factors (e.g., temperature, precipitation) are stronger determinants of range boundaries in apparently abiotically stressful areas ("stress" indicates abiotic factors that reduce population growth), including desert, polar, or high-elevation environments, whereas species interactions (e.g., herbivory, competition) play a stronger role in apparently less stressful environments. We tested a core tenet of this hypothesis-that population growth rate is more strongly affected by species interactions in less stressful areas-using experimental manipulations of species interactions affecting a common herbaceous plant, Hibiscus meyeri (Malvaceae), across an aridity gradient in a semiarid African savanna. Population growth was more strongly affected by four distinct species interactions (competition with herbaceous and shrubby neighbors, herbivory, and pollination) in less stressful mesic areas than in more stressful arid sites. However, contrary to common assumptions, this effect did not arise because of greater density or diversity of interacting species in less stressful areas, but rather because aridity reduced sensitivity of population growth to these interactions. Our work supports classic predictions about the relative strength of factors regulating population growth across stress gradients, but suggests that this pattern results from a previously unappreciated mechanism that may apply to many species worldwide.


Assuntos
Ecossistema , Hibiscus/crescimento & desenvolvimento , África , Animais , Mudança Climática , Clima Desértico , Herbivoria/fisiologia , Hibiscus/química , Hibiscus/fisiologia , Cinética
9.
Trends Ecol Evol ; 30(12): 780-792, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26525430

RESUMO

A long-standing theory, originating with Darwin, suggests that abiotic forces set species range limits at high latitude, high elevation, and other abiotically 'stressful' areas, while species interactions set range limits in apparently more benign regions. This theory is of considerable importance for both basic and applied ecology, and while it is often assumed to be a ubiquitous pattern, it has not been clearly defined or broadly tested. We review tests of this idea and dissect how the strength of species interactions must vary across stress gradients to generate the predicted pattern. We conclude by suggesting approaches to better test this theory, which will deepen our understanding of the forces that determine species ranges and govern responses to climate change.


Assuntos
Clima , Ecossistema , Geografia , Dinâmica Populacional , Animais , Plantas , Especificidade da Espécie
10.
Proc Biol Sci ; 281(1780): 20132647, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24523267

RESUMO

Recent work on facilitative plant-plant interactions has emphasized the importance of neighbours' amelioration of abiotic stress, but the facilitative effects of neighbours in reducing plant apparency to herbivores have received less attention. Whereas theory on stress reduction predicts that competition should be more important in less stressful conditions, with facilitation becoming more important in harsh environments, apparency theory suggests that facilitation should be greater in the presence of herbivores, where it is disadvantageous to be conspicuous regardless of abiotic stress level. We tested the relative strength of neighbours' stress reduction versus apparency reduction on survival, growth, reproduction and lifetime fitness of Hibiscus meyeri, a common forb in central Kenya, using neighbour removals conducted inside and outside large-herbivore exclosures replicated in arid and mesic sites. In the absence of herbivores, neighbours competed with H. meyeri in mesic areas and facilitated H. meyeri in arid areas, as predicted by stress-reduction mechanisms. By contrast, neighbours facilitated H. meyeri in the presence of herbivory, regardless of aridity level, consistent with plant apparency. Our results show that the facilitative effects arising from plant apparency are stronger than the effects arising from abiotic stress reduction in this system, suggesting that plant-apparency effects may be particularly important in systems with extant large-herbivore communities.


Assuntos
Herbivoria , Fenômenos Fisiológicos Vegetais , Estresse Fisiológico , Clima , Meio Ambiente , Quênia , Densidade Demográfica , Dinâmica Populacional
11.
BMC Evol Biol ; 11: 60, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21385379

RESUMO

BACKGROUND: In a spatially and temporally variable adaptive landscape, mutations operating in opposite directions and mutations of large effect should be commonly fixed due to the shifting locations of phenotypic optima. Similarly, an adaptive landscape with multiple phenotypic optima and deep valleys of low fitness between peaks will favor mutations of large effect. Traits under biotic selection should experience a more spatially and temporally variable adaptive landscape with more phenotypic optima than that experienced by traits under abiotic selection. To test this hypothesis, we assemble information from QTL mapping studies conducted in plants, comparing effect directions and effect sizes of detected QTL controlling traits putatively under abiotic selection to those controlling traits putatively under biotic selection. RESULTS: We find no differences in the fraction of antagonistic QTL in traits under abiotic and biotic selection, suggesting similar consistency in selection pressure on these two types of traits. However, we find that QTL controlling traits under biotic selection have a larger effect size than those under abiotic selection, supporting our hypothesis that QTL of large effect are more commonly detected in traits under biotic selection than in traits under abiotic selection. For traits under both abiotic and biotic selection, we find a large number of QTL of large effect, with 10.7% of all QTLs detected controlling more than 20% of the variance in phenotype. CONCLUSION: These results suggest that mutations of large effect are more common in adaptive landscapes strongly determined by biotic forces, but that these types of adaptive landscapes do not result in a higher fraction of mutations acting in opposite directions. The high number of QTL of large effect detected shows that QTL of large effect are more common than predicted by the infinitesimal model of genetic adaptation.


Assuntos
Evolução Molecular , Plantas/genética , Locos de Características Quantitativas , Seleção Genética , Adaptação Fisiológica/genética , Alelos , Mapeamento Cromossômico , Meio Ambiente , Modelos Genéticos , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...