Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(5): 2608-2621, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33600174

RESUMO

Covalently acting inhibitors constitute a large and growing fraction of approved small-molecule therapeutics as well as useful tools for a variety of in vitro and in vivo applications. Here, we aimed to develop a covalent antagonist of CC chemokine receptor 2 (CCR2), a class A GPCR that has been pursued as a therapeutic target in inflammation and immuno-oncology. Based on a known intracellularly binding CCR2 antagonist, several covalent derivatives were synthesized and characterized by radioligand binding and functional assays. These studies revealed compound 14 as an intracellular covalent ligand for CCR2. In silico modeling followed by site-directed mutagenesis confirmed that 14 forms a covalent bond with one of three proximal cysteine residues, which can be engaged interchangeably. To our knowledge, compound 14 represents the first covalent ligand reported for CCR2. Due to its unique properties, it may represent a promising tool for ongoing and future studies of CCR2 pharmacology.


Assuntos
Receptores CCR2/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Sítios de Ligação , Células CHO , Linhagem Celular Tumoral , Cricetulus , Cisteína/química , Desenho de Fármacos , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Receptores CCR2/genética , Receptores CCR2/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/metabolismo
2.
Biochem Pharmacol ; 151: 166-179, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29102677

RESUMO

While equilibrium binding affinities and in vitro functional antagonism of CB1 receptor antagonists have been studied in detail, little is known on the kinetics of their receptor interaction. In this study, we therefore conducted kinetic assays for nine 1-(4,5-diarylthiophene-2-carbonyl)-4-phenylpiperidine-4-carboxamide derivatives and included the CB1 antagonist rimonabant as a comparison. For this we newly developed a dual-point competition association assay with [3H]CP55940 as the radioligand. This assay yielded Kinetic Rate Index (KRI) values from which structure-kinetics relationships (SKR) of hCB1 receptor antagonists could be established. The fast dissociating antagonist 6 had a similar receptor residence time (RT) as rimonabant, i.e. 19 and 14 min, respectively, while the slowest dissociating antagonist (9) had a very long RT of 2222 min, i.e. pseudo-irreversible dissociation kinetics. In functional assays, 9 displayed insurmountable antagonism, while the effects of the shortest RT antagonist 6 and rimonabant were surmountable. Taken together, this study shows that hCB1 receptor antagonists can have very divergent RTs, which are not correlated to their equilibrium affinities. Furthermore, their RTs appear to define their mode of functional antagonism, i.e. surmountable vs. insurmountable. Finally, based on the recently resolved hCB1 receptor crystal structure, we propose that the differences in RT can be explained by a different binding mode of antagonist 9 from short RT antagonists that is able to displace unfavorable water molecules. Taken together, these findings are of importance for future design and evaluation of potent and safe hCB1 receptor antagonists.


Assuntos
Antagonistas de Receptores de Canabinoides , Receptor CB1 de Canabinoide/metabolismo , Animais , Ligação Competitiva , Células CHO , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/metabolismo , Cricetulus , Cicloexanóis/metabolismo , Cinética , Ligantes , Ligação Proteica , Ensaio Radioligante , Relação Estrutura-Atividade
3.
J Med Chem ; 60(23): 9545-9564, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29111736

RESUMO

We report on the synthesis and biological evaluation of a series of 1,2-diarylimidazol-4-carboxamide derivatives developed as CB1 receptor antagonists. These were evaluated in a radioligand displacement binding assay, a [35S]GTPγS binding assay, and in a competition association assay that enables the relatively fast kinetic screening of multiple compounds. The compounds show high affinities and a diverse range of kinetic profiles at the CB1 receptor and their structure-kinetic relationships (SKRs) were established. Using the recently resolved hCB1 receptor crystal structures, we also performed a modeling study that sheds light on the crucial interactions for both the affinity and dissociation kinetics of this family of ligands. We provide evidence that, next to affinity, additional knowledge of binding kinetics is useful for selecting new hCB1 receptor antagonists in the early phases of drug discovery.


Assuntos
Imidazóis/química , Imidazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Descoberta de Drogas , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Simulação de Acoplamento Molecular , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 125: 586-602, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27718474

RESUMO

We report the synthesis and biological evaluation of new 2-amino-4,5-diarylpyrimidines as selective antagonists at the adenosine A1 receptor. The scaffold they are based upon is a deaza variation of a previously reported collection of 3-amino-5,6-diaryl-1,2,4-triazines, members of which had a subnanomolar affinity but limited selectivity over the A2A subtype. Initially, similar structure-affinity relationships at the 5-aryl ring were established, and then emphasis was put on increasing selectivity at the hA1AR by introducing substituents on the N2-position, all the while maintaining a nanomolar affinity. Compound 3z, bearing a trans 4-hydroxycyclohexyl substituent, was identified as a potent (Ki(hA1AR) = 7.7 nM) and selective (Ki(hA2AAR) = 1389 nM) antagonist at the human adenosine A1 receptor. Computational docking was effected at the A1 and A2A subtypes, rationalizing the effect of the 4-hydroxycyclohexyl substituent on selectivity, in relation with the nature of the substituent on the 5-position of the pyrimidine.


Assuntos
Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A1 de Adenosina/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Antagonistas do Receptor A1 de Adenosina/química , Simulação por Computador , Humanos , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirimidinas/química , Relação Estrutura-Atividade
5.
Purinergic Signal ; 13(2): 191-201, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27915383

RESUMO

The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.


Assuntos
Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Receptor A2A de Adenosina/metabolismo , Triazinas/síntese química , Triazinas/farmacocinética , Triazóis/síntese química , Triazóis/farmacocinética , Antagonistas do Receptor A2 de Adenosina/química , Humanos , Receptor A2A de Adenosina/efeitos dos fármacos , Triazinas/química , Triazóis/química
6.
J Med Chem ; 59(10): 4769-77, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27124340

RESUMO

The sodium ion site is an allosteric site conserved among many G protein-coupled receptors (GPCRs). Amiloride 1 and 5-(N,N-hexamethylene)amiloride 2 (HMA) supposedly bind in this sodium ion site and can influence orthosteric ligand binding. The availability of a high-resolution X-ray crystal structure of the human adenosine A2A receptor (hA2AAR), in which the allosteric sodium ion site was elucidated, makes it an appropriate model receptor for investigating the allosteric site. In this study, we report the synthesis and evaluation of novel 5'-substituted amiloride derivatives as hA2AAR allosteric antagonists. The potency of the amiloride derivatives was assessed by their ability to displace orthosteric radioligand [(3)H]4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol ([(3)H]ZM-241,385) from both the wild-type and sodium ion site W246A mutant hA2AAR. 4-Ethoxyphenethyl-substituted amiloride 12l was found to be more potent than both amiloride and HMA, and the shift in potency between the wild-type and mutated receptor confirmed its likely binding to the sodium ion site.


Assuntos
Antagonistas do Receptor A2 de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Amilorida/metabolismo , Amilorida/farmacologia , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/química , Sítio Alostérico/efeitos dos fármacos , Amilorida/síntese química , Amilorida/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
7.
ACS Omega ; 1(2): 293-304, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023478

RESUMO

The rapid growth of structural information for G-protein-coupled receptors (GPCRs) has led to a greater understanding of their structure, function, selectivity, and ligand binding. Although novel ligands have been identified using methods such as virtual screening, computationally driven lead optimization has been possible only in isolated cases because of challenges associated with predicting binding free energies for related compounds. Here, we provide a systematic characterization of the performance of free-energy perturbation (FEP) calculations to predict relative binding free energies of congeneric ligands binding to GPCR targets using a consistent protocol and no adjustable parameters. Using the FEP+ package, first we validated the protocol, which includes a full lipid bilayer and explicit solvent, by predicting the binding affinity for a total of 45 different ligands across four different GPCRs (adenosine A2AAR, ß1 adrenergic, CXCR4 chemokine, and δ opioid receptors). Comparison with experimental binding affinity measurements revealed a highly predictive ranking correlation (average spearman ρ = 0.55) and low root-mean-square error (0.80 kcal/mol). Next, we applied FEP+ in a prospective project, where we predicted the affinity of novel, potent adenosine A2A receptor (A2AR) antagonists. Four novel compounds were synthesized and tested in a radioligand displacement assay, yielding affinity values in the nanomolar range. The affinity of two out of the four novel ligands (plus three previously reported compounds) was correctly predicted (within 1 kcal/mol), including one compound with approximately a tenfold increase in affinity compared to the starting compound. Detailed analyses of the simulations underlying the predictions provided insights into the structural basis for the two cases where the affinity was overpredicted. Taken together, these results establish a protocol for systematically applying FEP+ to GPCRs and provide guidelines for identifying potent molecules in drug discovery lead optimization projects.

8.
J Med Chem ; 58(15): 5916-29, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26125327

RESUMO

Kv11.1 (hERG) blockers with comparable potencies but different binding kinetics might display divergent pro-arrhythmic risks. In the present study, we explored structure-kinetics relationships in four series of Kv11.1 blockers next to their structure-affinity relationships. We learned that despite dramatic differences in affinities and association rates, there were hardly any variations in the dissociation rate constants of these molecules with residence times (RTs) of a few minutes only. Hence, we synthesized 16 novel molecules, in particular in the pyridinium class of compounds, to further address this peculiar phenomenon. We found molecules with very short RTs (e.g., 0.34 min for 37) and much longer RTs (e.g., 105 min for 38). This enabled us to construct a k on-k off-KD kinetic map for all compounds and subsequently divide the map into four provisional quadrants, providing a possible framework for a further and more precise categorization of Kv11.1 blockers. Additionally, two representative compounds (21 and 38) were tested in patch clamp assays, and their RTs were linked to their functional IC50 values. Our findings strongly suggest the importance of the simultaneous study of ligand affinities and kinetic parameters, which may help to explain and predict Kv11.1-mediated cardiotoxicity.


Assuntos
Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Potássio ERG1 , Células HEK293 , Humanos , Cinética , Relação Estrutura-Atividade
9.
Eur J Med Chem ; 101: 681-91, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26210506

RESUMO

We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.


Assuntos
Agonistas do Receptor A1 de Adenosina/química , Agonistas do Receptor A1 de Adenosina/farmacologia , Aminopiridinas/química , Receptor A1 de Adenosina/metabolismo , Tiazóis/química , Agonistas do Receptor A1 de Adenosina/síntese química , Aminopiridinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia
10.
Bioorg Med Chem ; 23(14): 4013-25, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25737085

RESUMO

Structure-affinity relationship (SAR) and structure-kinetics relationship (SKR) studies were combined to investigate a series of biphenyl anthranilic acid agonists for the HCA2 receptor. In total, 27 compounds were synthesized and twelve of them showed higher affinity than nicotinic acid. Two compounds, 6g (IC50=75nM) and 6z (IC50=108nM) showed a longer residence time profile compared to nicotinic acid, exemplified by their kinetic rate index (KRI) values of 1.31 and 1.23, respectively. The SAR study resulted in the novel 2-F, 4-OH derivative (6x) with an IC50 value of 23nM as the highest affinity HCA2 agonist of the biphenyl series, although it showed a similar residence time as nicotinic acid. The SAR and SKR data suggest that an early compound selection based on binding kinetics is a promising addition to the lead optimization process.


Assuntos
Agonistas Nicotínicos/química , Receptores Acoplados a Proteínas G/agonistas , Relação Estrutura-Atividade , ortoaminobenzoatos/química , Ligação Competitiva , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Cinética , Niacina/metabolismo , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo
11.
J Med Chem ; 57(8): 3213-22, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24669958

RESUMO

We report the synthesis and evaluation of previously unreported 4-amino-6-aryl-5-cyano-2-thiopyrimidines as selective human adenosine A1 receptor (hA1AR) agonists with tunable binding kinetics, this without affecting their nanomolar affinity for the target receptor. They show a very diverse range of kinetic profiles (from 1 min (compound 52) to 1 h (compound 43)), and their structure-affinity relationships (SAR) and structure-kinetics relationships (SKR) were established. When put in perspective with the increasing importance of binding kinetics in drug discovery, these results bring new evidence of the consequences of affinity-only driven selection of drug candidates, that is, the potential elimination of slightly less active compounds that may display preferable binding kinetics.


Assuntos
Agonistas do Receptor A1 de Adenosina/síntese química , Pirimidinas/síntese química , Agonistas do Receptor A1 de Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Animais , Células CHO , Cricetulus , Descoberta de Drogas , Células HEK293 , Humanos , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Ensaio Radioligante , Relação Estrutura-Atividade
12.
J Med Chem ; 56(23): 9427-40, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24224763

RESUMO

Cardiotoxicity is a side effect that plagues modern drug design and is very often due to the off-target blockade of the human ether-à-go-go related gene (hERG) potassium channel. To better understand the structural determinants of this blockade, we designed and synthesized a series of 40 derivatives of clofilium, a class III antiarrhythmic agent. These were evaluated in radioligand binding and patch-clamp assays to establish structure-affinity relationships (SAR) for this potassium channel. Efforts were especially focused on studying the influence of the structural rigidity and the nature of the linkers composing the clofilium scaffold. It was shown that introducing triple bonds and oxygen atoms in the n-butyl linker of the molecule greatly reduced affinity without significantly modifying the pKa of the essential basic nitrogen. These findings could prove useful in the first stages of drug discovery as a systematic way of reducing the risk of hERG K(+) channel blockade-induced cardiotoxicity.


Assuntos
Antiarrítmicos/química , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/química , Compostos de Amônio Quaternário/química , Relação Estrutura-Atividade
13.
J Med Chem ; 56(7): 2828-40, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23473309

RESUMO

Drug-induced blockade of the human ether-a-go-go-related gene K(+) channel (hERG) represents one of the major antitarget concerns in pharmaceutical industry. SAR studies of this ion channel have shed light on the structural requirements for hERG interaction but most importantly may reveal drug design principles to reduce hERG affinity. In the present study, a novel library of neutral and positively charged heteroaromatic derivatives of the class III antiarrhythmic agent dofetilide was synthesized and assessed for hERG affinity in radioligand binding and manual patch clamp assays. Structural modifications of the pyridine moiety, side chain, and peripheral aromatic moieties were evaluated, thereby revealing approaches for reducing hERG binding affinity. In particular, we found that the extra rigidity imposed close to the positively charged pyridine moiety can be very efficient in decreasing hERG affinity.


Assuntos
Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Sulfonamidas/farmacologia , Canal de Potássio ERG1 , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Fenetilaminas/química , Bloqueadores dos Canais de Potássio/química , Ensaio Radioligante , Sulfonamidas/química
14.
Org Lett ; 13(24): 6452-5, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22082237

RESUMO

The asymmetric synthesis of (-)-swainsonine and (-)-8-epi-swainsonine is reported through the addition of either the allenylzinc or the allenyl lithio cyanocuprate reagents derived from [3-(methoxymethoxy)prop-1-ynyl]trimethylsilane to enantiopure α,ß-dialkoxy N-tert-butanesulfinylimines derived from d-erythronolactone.


Assuntos
Swainsonina/análogos & derivados , Swainsonina/síntese química , Álcoois/química , Iminas/química , Estrutura Molecular , Estereoisomerismo , Ácidos Sulfínicos/química , Swainsonina/química
15.
J Org Chem ; 74(22): 8890-2, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19831344

RESUMO

The rearrangement of 2,5-bis(silylated)-N-Boc pyrroles in their 2,4-isomers is shown to proceed under mild acidic conditions. A reasonable mechanism, based on literature as well as experiments, is proposed to rationalize this transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...