Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 108, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36814198

RESUMO

BACKGROUND: Global warming raises serious concerns about the persistence of species and populations locally adapted to their environment, simply because of the shift it produces in their adaptive landscape. For instance, the phenological cycle of tree species may be strongly affected by higher winter temperatures and late frost in spring. Given the variety of ecosystem services they provide, the question of forest tree adaptation has received increasing attention in the scientific community and catalyzed research efforts in ecology, evolutionary biology and functional genomics to study their adaptive capacity to respond to such perturbations. RESULTS: In the present study, we used an elevation gradient in the Pyrenees Mountains to explore the gene expression network underlying dormancy regulation in natural populations of sessile oak stands sampled along an elevation cline and potentially adapted to different climatic conditions mainly driven by temperature. By performing analyses of gene expression in terminal buds we identified genes displaying significant dormancy, elevation or dormancy-by-elevation interaction effects. Our Results highlighted that low- and high-altitude populations have evolved different molecular strategies for minimizing late frost damage and maximizing the growth period, thereby increasing potentially their respective fitness in these contrasting environmental conditions. More particularly, population from high elevation overexpressed genes involved in the inhibition of cell elongation and delaying flowering time while genes involved in cell division and flowering, enabling buds to flush earlier were identified in population from low elevation. CONCLUSION: Our study made it possible to identify key dormancy-by-elevation responsive genes revealing that the stands analyzed in this study have evolved distinct molecular strategies to adapt their bud phenology in response to temperature.


Assuntos
Quercus , Quercus/genética , Ecossistema , Temperatura , Estações do Ano , Florestas , Árvores
2.
Int J Biometeorol ; 65(3): 369-379, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31352524

RESUMO

Leaf phenology is a major driver of ecosystem functioning in temperate forests and a robust indicator of climate change. Both the inter-annual and inter-population variability of leaf phenology have received much attention in the literature; in contrast, the within-population variability of leaf phenology has been far less studied. Beyond its impact on individual tree physiological processes, the within-population variability of leaf phenology can affect the estimation of the average budburst or leaf senescence dates at the population scale. Here, we monitored the progress of spring and autumn leaf phenology over 14 tree populations (9 tree species) in six European forests over the period of 2011 to 2018 (yielding 16 site-years of data for spring, 14 for autumn). We monitored 27 to 512 (with a median of 62) individuals per population. We quantified the within-population variability of leaf phenology as the standard deviation of the distribution of individual dates of budburst or leaf senescence (SDBBi and SDLSi, respectively). Given the natural variability of phenological dates occurring in our tree populations, we estimated from the data that a minimum sample size of 28 (resp. 23) individuals, are required to estimate SDBBi (resp. SDLSi) with a precision of 3 (resp. 7) days. The within-population of leaf senescence (average SDLSi = 8.5 days) was on average two times larger than for budburst (average SDBBi = 4.0 days). We evidenced that warmer temperature during the budburst period and a late average budburst date were associated with a lower SDBBi, as a result of a quicker spread of budburst in tree populations, with a strong species effect. Regarding autumn phenology, we observed that later senescence and warm temperatures during the senescence period were linked with a high SDLSi, with a strong species effect. The shares of variance explained by our models were modest suggesting that other factors likely influence the within-population variation in leaf phenology. For instance, a detailed analysis revealed that summer temperatures were negatively correlated with a lower SDLSi.


Assuntos
Ecossistema , Árvores , Humanos , Folhas de Planta , Estações do Ano , Temperatura
3.
Funct Ecol ; 35(8): 1745-1755, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36825207

RESUMO

The genetic and phenotypic variability of life history traits determines the demographic attributes of tree populations and, thus, their responses to anthropogenic climate change. Growth- and survival-related traits have been widely studied in forest ecology, but little is known about the determinism of reproductive traits.Using an elevation gradient experiment in the Pyrenees we assessed the degree to which variations in reproductive effort along climatic gradients are environmentally or genetically driven, by comparing oak populations (Quercus petraea) growing under field and common garden conditions.In situ monitoring revealed a decline in reproductive effort with increasing elevation and decreasing temperature. In common garden conditions, significant genetic differentiation was observed between provenances for reproduction and growth: trees from cold environments (high elevations) grew more slowly, and produced larger acorns in larger numbers. Our observations show that genetic and phenotypic clines for reproductive traits have opposite signs (counter-gradient) along the environmental gradient as opposed to growth, for which genetic variation parallels phenotypic variation (co-gradient).The counter-gradient found here for reproductive effort reveals that genetic variation partly counteracts the phenotypic effect of temperature, moderating the change in reproductive effort according to temperature. We consider the possible contribution to this counter-gradient in reproductive effort as an evolutionary trade-off between reproduction and growth.

4.
Evol Appl ; 13(10): 2772-2790, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294022

RESUMO

Most existing forests are subjected to natural and human-mediated selection pressures, which have increased due to climate change and the increasing needs of human societies for wood, fibre and fuel resources. It remains largely unknown how these pressures trigger evolutionary changes. We address this issue here for temperate European oaks (Quercus petraea and Q. robur), which grow in mixed stands, under even-aged management regimes. We screened numerous functional traits for univariate selection gradients and for expected and observed genetic changes over two successive generations. In both species, growth, leaf morphology and physiology, and defence-related traits displayed significant selection gradients and predicted shifts, whereas phenology, water metabolism, structure and resilience-related traits did not. However, the direction of the selection response and the potential for adaptive evolution differed between the two species. Quercus petraea had a much larger phenotypic and genetic variance of fitness than Q. robur. This difference raises concerns about the adaptive response of Q. robur to contemporary selection pressures. Our investigations suggest that Q. robur will probably decline steadily, particularly in mixed stands with Q. petraea, consistent with the contrasting demographic dynamics of the two species.

5.
Tree Genet Genomes ; 162020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32256274

RESUMO

BACKGROUND: Predicting the evolutionary potential of natural tree populations requires the estimation of heritability and genetic correlations among traits on which selection acts, as differences in evolutionary success between species may rely on differences for these genetic parameters. In situ estimates are expected to be more accurate than measures done under controlled conditions which do not reflect the natural environmental variance. AIMS: The aim of the current study was to estimate three genetic parameters (i.e. heritability, evolvability and genetic correlations) in a natural mixed oak stand composed of Quercus petraea and Quercus robur about 100 years old, for 58 traits of ecological and functional relevance (growth, reproduction, phenology, physiology, resilience, structure, morphology and defence). METHODS: First we estimated genetic parameters directly in situ using realized genomic relatedness of adult trees and parentage relationships over two generations to estimate the traits additive variance. Secondly, we benefited from existing ex situ experiments (progeny tests and conservation collection) installed with the same populations, thus allowing comparisons of in situ heritability estimates with more traditional methods. RESULTS: Heritability and evolvability estimates obtained with different methods varied substantially and showed large confidence intervals, however we found that in situ were less precise than ex situ estimates, and assessments over two generations (with deeper relatedness) improved estimates of heritability while large sampling sizes are needed for accurate estimations. At the biological level, heritability values varied moderately across different ecological and functional categories of traits, and genetic correlations among traits were conserved over the two species. CONCLUSION: We identified limits for using realized genomic relatedness in natural stands to estimate the genetic variance, given the overall low variance of genetic relatedness and the rather low sampling sizes of currently used long term genetic plots in forestry. These limits can be overcome if larger sample sizes are considered, or if the approach is extended over the next generation.

6.
New Phytol ; 226(4): 1171-1182, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31394003

RESUMO

Latitudinal and elevational gradients provide valuable experimental settings for studies of the potential impact of global warming on forest tree species. The availability of long-term phenological surveys in common garden experiments for traits associated with climate, such as bud flushing for sessile oaks (Quercus petraea), provide an ideal opportunity to investigate this impact. We sequenced 18 sessile oak populations and used available sequencing data for three other closely related European white oak species (Quercus pyrenaica, Quercus pubescens, and Quercus robur) to explore the evolutionary processes responsible for shaping the genetic variation across latitudinal and elevational gradients in extant sessile oaks. We used phenotypic surveys in common garden experiments and climatic data for the population of origin to perform genome-wide scans for population differentiation and genotype-environment and genotype-phenotype associations. The inferred historical relationships between Q. petraea populations suggest that interspecific gene flow occurred between Q. robur and Q. petraea populations from cooler or wetter areas. A genome-wide scan of differentiation between Q. petraea populations identified single nucleotide polymorphisms (SNPs) displaying strong interspecific relative divergence between these two species. These SNPs followed genetic clines along climatic or phenotypic gradients, providing further support for the likely contribution of introgression to the adaptive divergence of Q. petraea populations. Overall, the results indicate that outliers and associated SNPs are Q. robur ancestry-informative. We discuss the results of this study in the framework of the postglacial colonization scenario, in which introgression and diversifying selection have been proposed as essential drivers of Q. petraea microevolution.


Assuntos
Quercus , Adaptação Fisiológica/genética , Evolução Biológica , Fluxo Gênico , Genótipo , Quercus/genética
7.
Int J Biometeorol ; 58(9): 1853-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24452386

RESUMO

With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.


Assuntos
Fagus/fisiologia , Aquecimento Global , Folhas de Planta/crescimento & desenvolvimento , Quercus/anatomia & histologia , Quercus/fisiologia , Estações do Ano , Temperatura , Europa (Continente) , Fagus/anatomia & histologia , Florestas , Folhas de Planta/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA