Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Data Brief ; 54: 110404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665156

RESUMO

There is a growing interest in milk oligosaccharides (MOs) because of their numerous benefits for newborns' and long-term health. A large number of MO structures have been identified in mammalian milk. Mostly described in human milk, the oligosaccharide richness, although less broad, has also been reported for a wide range of mammalian species. The structure of MOs is particularly difficult to report as it results from the combination of 5 monosaccharides linked by various glycosidic bonds forming structurally diverse and complex matrices of linear and branched oligosaccharides. Exploring the literature and extracting relevant information on MO diversity within or across species appears promising to elucidate structure-function role of MOs. Currently, given the complexity of these molecules, the main issues in exploring literature to extract relevant information on MO diversity within or across species relate to the heterogeneity in the way authors refer to these molecules. Herein, we provide a thesaurus (MilkOligoThesaurus) including the names and synonyms of MOs collected from key selected articles on mammalian milk analyses. MilkOligoThesaurus gathers the names of the MOs with a complete description of their monosaccharide composition and structures. When available, each unique MO molecule is linked to its ID from the NCBI PubChem and ChEBI databases. MilkOligoThesaurus is provided in a tabular format. It gathers 245 unique oligosaccharide structures described by 22 features (columns) including the name of the molecule, its abbreviation, the chemical database IDs if available, the monosaccharide composition, chemical information (molecular formula, monoisotopic mass), synonyms, its formula in condensed form, and in abbreviated condensed form, the abbreviated systematic name, the systematic name, the isomer group, and scientific article sources. MilkOligoThesaurus is also provided in the SKOS (Simple Knowledge Organization System) format. This thesaurus is a valuable resource gathering MO naming variations that are not found elsewhere for (i) Text and Data Mining to enable automatic annotation and rapid extraction of milk oligosaccharide data from scientific papers; (ii) biology researchers aiming to search for or decipher the structure of milk oligosaccharides based on any of their names, abbreviations or monosaccharide compositions and linkages.

2.
Microbiol Resour Announc ; 13(1): e0087423, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38112476

RESUMO

The genomes of four clinical Gram-negative ESKAPE bacterial strains highly resistant to the last-resort antibiotic colistin were sequenced and analyzed. The strains were found to carry multidrug-resistant genes besides colistin-resistant genes.

3.
Front Microbiol ; 14: 1286661, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920261

RESUMO

Background: The use of omics data for monitoring the microbial flow of fresh meat products along a production line and the development of spoilage prediction tools from these data is a promising but challenging task. In this context, we produced a large multivariate dataset (over 600 samples) obtained on the production lines of two similar types of fresh meat products (poultry and raw pork sausages). We describe a full analysis of this dataset in order to decipher how the spoilage microbial ecology of these two similar products may be shaped differently depending on production parameter characteristics. Methods: Our strategy involved a holistic approach to integrate unsupervised and supervised statistical methods on multivariate data (OTU-based microbial diversity; metabolomic data of volatile organic compounds; sensory measurements; growth parameters), and a specific selection of potential uncontrolled (initial microbiota composition) or controlled (packaging type; lactate concentration) drivers. Results: Our results demonstrate that the initial microbiota, which is shown to be very different between poultry and pork sausages, has a major impact on the spoilage scenarios and on the effect that a downstream parameter such as packaging type has on the overall evolution of the microbial community. Depending on the process, we also show that specific actions on the pork meat (such as deboning and defatting) elicit specific food spoilers such as Dellaglioa algida, which becomes dominant during storage. Finally, ecological network reconstruction allowed us to map six different metabolic pathways involved in the production of volatile organic compounds involved in spoilage. We were able connect them to the different bacterial actors and to the influence of packaging type in an overall view. For instance, our results demonstrate a new role of Vibrionaceae in isopropanol production, and of Latilactobacillus fuchuensis and Lactococcus piscium in methanethiol/disylphide production. We also highlight a possible commensal behavior between Leuconostoc carnosum and Latilactobacillus curvatus around 2,3-butanediol metabolism. Conclusion: We conclude that our holistic approach combined with large-scale multi-omic data was a powerful strategy to prioritize the role of production parameters, already known in the literature, that shape the evolution and/or the implementation of different meat spoilage scenarios.

4.
Expert Rev Proteomics ; 20(11): 251-266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787106

RESUMO

INTRODUCTION: Continuous advances in mass spectrometry (MS) technologies have enabled deeper and more reproducible proteome characterization and a better understanding of biological systems when integrated with other 'omics data. Bioinformatic resources meeting the analysis requirements of increasingly complex MS-based proteomic data and associated multi-omic data are critically needed. These requirements included availability of software that would span diverse types of analyses, scalability for large-scale, compute-intensive applications, and mechanisms to ease adoption of the software. AREAS COVERED: The Galaxy ecosystem meets these requirements by offering a multitude of open-source tools for MS-based proteomics analyses and applications, all in an adaptable, scalable, and accessible computing environment. A thriving global community maintains these software and associated training resources to empower researcher-driven analyses. EXPERT OPINION: The community-supported Galaxy ecosystem remains a crucial contributor to basic biological and clinical studies using MS-based proteomics. In addition to the current status of Galaxy-based resources, we describe ongoing developments for meeting emerging challenges in MS-based proteomic informatics. We hope this review will catalyze increased use of Galaxy by researchers employing MS-based proteomics and inspire software developers to join the community and implement new tools, workflows, and associated training content that will add further value to this already rich ecosystem.


Assuntos
Proteômica , Humanos , Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Software
5.
mSphere ; 8(2): e0049522, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36794931

RESUMO

Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.


Assuntos
Anti-Infecciosos , Doenças das Aves Domésticas , Animais , Aves Domésticas , Galinhas , Estudo de Associação Genômica Ampla , Filogenia
6.
PLoS One ; 18(1): e0272473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662691

RESUMO

The dramatic increase in the number of microbe descriptions in databases, reports, and papers presents a two-fold challenge for accessing the information: integration of heterogeneous data in a standard ontology-based representation and normalization of the textual descriptions by semantic analysis. Recent text mining methods offer powerful ways to extract textual information and generate ontology-based representation. This paper describes the design of the Omnicrobe application that gathers comprehensive information on habitats, phenotypes, and usages of microbes from scientific sources of high interest to the microbiology community. The Omnicrobe database contains around 1 million descriptions of microbe properties. These descriptions are created by analyzing and combining six information sources of various kinds, i.e. biological resource catalogs, sequence databases and scientific literature. The microbe properties are indexed by the Ontobiotope ontology and their taxa are indexed by an extended version of the taxonomy maintained by the National Center for Biotechnology Information. The Omnicrobe application covers all domains of microbiology. With simple or rich ontology-based queries, it provides easy-to-use support in the resolution of scientific questions related to the habitats, phenotypes, and uses of microbes. We illustrate the potential of Omnicrobe with a use case from the food innovation domain.


Assuntos
Mineração de Dados , Ecossistema , Mineração de Dados/métodos , Bases de Dados Factuais , Publicações , Fenótipo
7.
PLoS One ; 17(11): e0271847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36399439

RESUMO

Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a next-generation probiotic for use in restoring the balance of the gut microbial flora and, due to its strong anti-inflammatory properties, for the treatment of certain pathological conditions. However, very little information is available about gene function and regulation in this species. Here, we utilized a systems biology approach-weighted gene co-expression network analysis (WGCNA)-to analyze gene expression in three publicly available RNAseq datasets from F. prausnitzii strain A2-165, all obtained in different laboratory conditions. The co-expression network was then subdivided into 24 co-expression gene modules. A subsequent enrichment analysis revealed that these modules are associated with different kinds of biological processes, such as arginine, histidine, cobalamin, or fatty acid metabolism as well as bacteriophage function, molecular chaperones, stress response, or SOS response. Some genes appeared to be associated with mechanisms of protection against oxidative stress and could be essential for F. prausnitzii's adaptation and survival under anaerobic laboratory conditions. Hub and bottleneck genes were identified by analyses of intramodular connectivity and betweenness, respectively; this highlighted the high connectivity of genes located on mobile genetic elements, which could promote the genetic evolution of F. prausnitzii within its ecological niche. This study provides the first exploration of the complex regulatory networks in F. prausnitzii, and all of the "omics" data are available online for exploration through a graphical interface at https://shiny.migale.inrae.fr/app/faeprau.


Assuntos
Microbioma Gastrointestinal , Probióticos , Humanos , Faecalibacterium prausnitzii/genética , Simbiose , Microbioma Gastrointestinal/genética , Anti-Inflamatórios
8.
Environ Microbiol ; 24(10): 4853-4868, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848130

RESUMO

Diversity of viruses infecting non-extremophilic archaea has been grossly understudied. This is particularly the case for viruses infecting methanogenic archaea, key players in the global carbon biogeochemical cycle. Only a dozen of methanogenic archaeal viruses have been isolated so far. In the present study, we implemented an original coupling between stable isotope probing and complementary shotgun metagenomic analyses to identify viruses of methanogens involved in the bioconversion of formate, which was used as the sole carbon source in batch anaerobic digestion microcosms. Under our experimental conditions, the microcosms were dominated by methanogens belonging to the order Methanobacteriales (Methanobacterium and Methanobrevibacter genera). Metagenomic analyses yielded several previously uncharacterized viral genomes, including a complete genome of a head-tailed virus (class Caudoviricetes, proposed family Speroviridae, Methanobacterium host) and several near-complete genomes of spindle-shaped viruses. The two groups of viruses are predicted to infect methanogens of the Methanobacterium and Methanosarcina genera and represent two new virus families. The metagenomics results are in good agreement with the electron microscopy observations, which revealed the dominance of head-tailed virus-like particles and the presence of spindle-shaped particles. The present study significantly expands the knowledge on the viral diversity of viruses of methanogens.


Assuntos
Vírus de Archaea , Vírus , Archaea/genética , Carbono , Formiatos , Genoma Viral , Isótopos , Metagenômica/métodos , Methanobacterium , Vírus/genética
9.
Microbiol Resour Announc ; 11(4): e0093421, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35258325

RESUMO

Thermobacillus xylanilyticus is a thermophilic and hemicellulolytic bacterium able to use several lignocelluloses as its main carbon source. This draft genome sequence gives insight into the genomic potential of this bacterium and provides new resources to understand the enzymatic mechanisms used by the bacterium during lignocellulose degradation and will allow the identification of robust lignocellulolytic enzymes.

10.
Microorganisms ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35208788

RESUMO

A previous study identified differences in rind aspects between Cantal-type cheeses manufactured from the same skimmed milk, supplemented with cream derived either from pasture-raised cows (P) or from cows fed with maize silage (M). Using an integrated analysis of multiomic data, the present study aimed at investigating potential correlations between cream origin and metagenomic, lipidomic and volatolomic profiles of these Cantal cheeses. Fungal and bacterial communities of cheese cores and rinds were characterized using DNA metabarcoding at different ripening times. Lipidome and volatolome were obtained from the previous study at the end of ripening. Rind microbial communities, especially fungal communities, were influenced by cream origin. Among bacteria, Brachybacterium were more abundant in P-derived cheeses than in M-derived cheeses after 90 and 150 days of ripening. Sporendonema casei, a yeast added as a ripening starter during Cantal manufacture, which contributes to rind typical aspect, had a lower relative abundance in P-derived cheeses after 150 days of ripening. Relative abundance of this fungus was highly negatively correlated with concentrations of C18 polyunsaturated fatty acids and to concentrations of particular volatile organic compounds, including 1-pentanol and 3-methyl-2-pentanol. Overall, these results evidenced original interactions between milk fat composition and the development of fungal communities in cheeses.

11.
Microbiol Resour Announc ; 11(2): e0121921, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084224

RESUMO

The genome of the Bacillus velezensis P1 strain isolated from a biofilm on the wall of a pig farm was sequenced. The strain harbors many surface colonization genes involved in surfactant, matrix, and antibacterial synthesis.

12.
Methods Mol Biol ; 2361: 179-196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236662

RESUMO

With the increased simplicity of producing proteomics data, the bottleneck has now shifted to the functional analysis of large lists of proteins to translate this primary level of information into meaningful biological knowledge. Tools implementing such approach are a powerful way to gain biological insights related to their samples, provided that biologists/clinicians have access to computational solutions even when they have little programming experience or bioinformatics support. To achieve this goal, we designed ProteoRE (Proteomics Research Environment), a unified online research service that provides end-users with a set of tools to interpret their proteomics data in a collaborative and reproducible manner. ProteoRE is built upon the Galaxy framework, a workflow system allowing for data and analysis persistence, and providing user interfaces to facilitate the interaction with tools dedicated to the functional and the visual analysis of proteomics datasets. A set of tools relying on computational methods selected for their complementarity in terms of functional analysis was developed and made accessible via the ProteoRE web portal. In this chapter, a step-by-step protocol linking these tools is designed to perform a functional annotation and GO-based enrichment analyses applied to a set of differentially expressed proteins as a use case. Analytical practices, guidelines as well as tips related to this strategy are also provided. Tools, datasets, and results are freely available at http://www.proteore.org , allowing researchers to reuse them.


Assuntos
Proteômica , Internet , Proteínas , Software , Fluxo de Trabalho
13.
J Environ Manage ; 291: 112631, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932835

RESUMO

Energy recovery from lignocellulosic waste has been studied as an alternative to the problem of inappropriate waste disposal. The present study aimed at characterizing the microbial community and the functional activity of reactors applied to H2 production through lignocellulosic waste fermentation in optimized conditions. The latter were identified by means of Rotational Central Composite Design (RCCD), applied to optimize allochthonous inoculum concentration (2.32-5.68 gTVS/L of granular anaerobic sludge), pH (4.32-7.68) and Citrus Peel Waste (CPW) concentration (1.55-28.45 g/L). After validation, the conditions identified for optimal H2 production were 4 gSTV/L of allochthonous inoculum, 29.8 g/L of CPW (substrate) and initial pH of 8.98. In these conditions, 48.47 mmol/L of H2 was obtained, which is 3.64 times higher than the concentration in unoptimized conditions (13.31 mmol H2/L using 15 g/L of CPW, 2 gTVS/L of allochthonous inoculum, pH 7.0). Acetogenesis was the predominant pathway, and maximal concentrations of 3,731 mg/L of butyric acid and 3,516 mg/L of acetic acid were observed. Regarding the metataxonomic profile, Clostridium genus was dramatically favored in the optimized condition (79.78%) when compared to the allochthonous inoculum (0.43%). It was possible to identify several genes related to H2 (i.e dehydrogenases) and volatile fatty acids (VFA) production and with cellulose degradation, especially some CAZymes from the classes Auxiliary Activities, Glycoside Hydrolases and Glycosyl Transferase. By means of differential gene expression it was observed that cellulose degradation and acetic acid production pathways were overabundant in samples from the optimized reactors, highlighting endo-ß-1,4-glucanase/cellulose, endo-ß-1,4-xylanase, ß-glucosidase, ß-mannosidase, cellulose ß-1,4-cellobiosidase, cellobiohydrolase, and others, as main the functions.


Assuntos
Citrus , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Hidrogênio/análise , Concentração de Íons de Hidrogênio , Esgotos
14.
Environ Microbiol Rep ; 13(3): 364-374, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33763994

RESUMO

Specific interactions have been highlighted between cyanobacteria and chemotrophic bacteria within the cyanosphere, suggesting that nutrients recycling could be optimized by cyanobacteria/bacteria exchanges. In order to determine the respective metabolic roles of the cyanobacterial and bacterial consortia (microbiome), a day-night metatranscriptomic analysis was performed on Dolichospermum sp. (N2 -fixer) and Microcystis sp. (non N2 -fixer) natural blooms occurring successively within a French peri-urban lake. The taxonomical and functional analysis of the metatranscriptoms have highlighted specific association of bacteria within the cyanosphere, driven by the cyanobacteria identity, without strongly modifying the functional composition of the microbiomes, suggesting functional redundancy within the cyanosphere. Moreover, the functional composition of these active communities was driven by the living mode. During the two successive bloom events, it appeared that NH4 + (newly fixed and/or allochthonous) was preferentially transformed into amino acids for the both the microbiome and the cyanobacteria, while phosphate metabolism was enhanced, suggesting that due to a high cellular growth, P limitation might take place within the cyanosphere consortium.


Assuntos
Cianobactérias , Microbiota , Microcystis , Cianobactérias/genética , Lagos , Nutrientes
15.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664152

RESUMO

We report the complete genome sequence of Staphylococcus epidermidis commensal strain PH1-28, isolated from the forehead of a healthy donor. The assembled 2.6-Mbp genome consisted of one chromosome and five plasmids. These data will provide valuable information and important insights into the physiology and metabolism of this skin flora microorganism.

16.
Genes (Basel) ; 11(9)2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858915

RESUMO

Streptococcus salivarius is a significant contributor to the human oral, pharyngeal and gut microbiomes that contribute to the maintenance of health. The high genomic diversity observed in this species is mainly caused by horizontal gene transfer. This work aimed to evaluate the contribution of integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs) in S. salivarius genome diversity. For this purpose, we performed an in-depth analysis of 75 genomes of S. salivarius and searched for signature genes of conjugative and mobilizable elements. This analysis led to the retrieval of 69 ICEs, 165 IMEs and many decayed elements showing their high prevalence in S. salivarius genomes. The identification of almost all ICE and IME boundaries allowed the identification of the genes in which these elements are inserted. Furthermore, the exhaustive analysis of the adaptation genes carried by these elements showed that they encode numerous functions such as resistance to stress, to antibiotics or to toxic compounds, and numerous enzymes involved in diverse cellular metabolic pathways. These data support the idea that not only ICEs but also IMEs and decayed elements play an important role in S. salivarius adaptation to the environment.


Assuntos
Adaptação Fisiológica , Conjugação Genética , Elementos de DNA Transponíveis , Variação Genética , Genoma Bacteriano , Sequências Repetitivas Dispersas , Streptococcus salivarius/genética , Meio Ambiente , Evolução Molecular , Genômica , Humanos , Streptococcus salivarius/fisiologia
17.
Data Brief ; 30: 105453, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32300619

RESUMO

Data in this article provide detailed information on the diversity of bacterial communities present on 576 samples of raw pork or poultry sausages produced industrially in 2017. Bacterial growth dynamics and diversity were monitored throughout the refrigerated storage period to estimate the impact of packaging atmosphere and the use of potassium lactate as chemical preservative. The data include several types of analysis aiming at providing a comprehensive microbial ecology of spoilage during storage and how the process parameters do influence this phenomenon. The analysis includes: the gas content in packaging, pH, chromametric measurements, plate counts (total mesophilic aerobic flora and lactic acid bacteria), sensorial properties of the products, meta-metabolomic quantification of volatile organic compounds and bacterial community metagenetic analysis. Bacterial diversity was monitored using two types of amplicon sequencing (16S rRNA and GyrB encoding genes) at different time points for the different conditions (576 samples for gyrB and 436 samples for 16S rDNA). Sequencing data were generated by using Illumina MiSeq. The sequencing data have been deposited in the bioproject PRJNA522361. Samples accession numbers vary from SAMN10964863 to SAMN10965438 for gyrB amplicon and from SAMN10970131 to SAMN10970566 for 16S.

18.
Infect Genet Evol ; 82: 104309, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240800

RESUMO

Mycobacterium bovis strain Mb3601 was isolated from the lymph node of an infected bovine in a bovine tuberculosis highly enzoonotic area of Burgundy, France. It was selected to obtain a complete genome for a new clonal complex, mainly constituted by SB0120-spoligotype strains that we propose to name "European 3". It was recently described as "clonal group I" based on whole-genome SNP analysis of 87 French strains. Here we describe the 4,365,068 bp complete genome obtained by the combination of PacBio and Illumina technologies. This genome of 65.64% G + C content includes 4024 predicted protein-coding genes, 52 tRNA, 3 rRNA and 11 copies of IS6110.


Assuntos
Genoma Bacteriano , Mycobacterium bovis/genética , Animais , Bovinos , França , Tuberculose Bovina/microbiologia , Sequenciamento Completo do Genoma
19.
ISME J ; 14(3): 771-787, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31827247

RESUMO

Despite an overall temporal stability in time of the human gut microbiota at the phylum level, strong variations in species abundance have been observed. We are far from a clear understanding of what promotes or disrupts the stability of microbiome communities. Environmental factors, like food or antibiotic use, modify the gut microbiota composition, but their overall impacts remain relatively low. Phages, the viruses that infect bacteria, might constitute important factors explaining temporal variations in species abundance. Gut bacteria harbour numerous prophages, or dormant viruses, which can evolve to become ultravirulent phage mutants, potentially leading to important bacterial death. Whether such phenomenon occurs in the mammal's microbiota has been largely unexplored. Here we studied temperate phage-bacteria coevolution in gnotoxenic mice colonised with Roseburia intestinalis, a dominant symbiont of the human gut microbiota, and Escherichia coli, a sub-dominant member of the same microbiota. We show that R. intestinalis L1-82 harbours two active prophages, Jekyll and Shimadzu. We observed the systematic evolution in mice of ultravirulent Shimadzu phage mutants, which led to a collapse of R. intestinalis population. In a second step, phage infection drove the fast counter-evolution of host phage resistance mainly through phage-derived spacer acquisition in a clustered regularly interspaced short palindromic repeats array. Alternatively, phage resistance was conferred by a prophage originating from an ultravirulent phage with a restored ability to lysogenize. Our results demonstrate that prophages are a potential source of ultravirulent phages that can successfully infect most of the susceptible bacteria. This suggests that prophages can play important roles in the short-term temporal variations observed in the composition of the gut microbiota.


Assuntos
Clostridiales/genética , Clostridiales/virologia , Microbioma Gastrointestinal , Camundongos/microbiologia , Camundongos/virologia , Prófagos/fisiologia , Animais , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fezes/microbiologia , Feminino , Humanos , Lisogenia , Camundongos Endogâmicos C3H , Prófagos/genética , Prófagos/isolamento & purificação
20.
Food Res Int ; 125: 108643, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554056

RESUMO

Sodium reduction in the human diet is currently one of the main concerns for public health agencies and, consequently, has become a challenge for the food industries. In this study, the impact of reduced sodium chloride content (20%) or its partial substitution with potassium chloride in soft ("Camembert"-type) and semi-hard ("Reblochon"-type) cheeses was evaluated. Analyses included physicochemical and biochemical composition, microbial counts, 16S rRNA gene metabarcoding and metatranscriptomic analysis, volatile aroma compounds and sensory analysis. Regarding soft cheeses, the salt content of cheeses affected proteolysis at 21 days of ripening. RNA sequencing revealed that the relative activity of G. candidum increased, whereas that of P. camemberti decreased in reduced salt cheeses in comparison to the controls. Higher global intensity of odor and taste was observed in cheeses with reduced salt content, consistent with higher levels of alcohol and ester components. Regarding semi-hard cheeses, modifications of salt content did not significantly affect either their biochemical parameters and sensory characteristics or their technological microbial composition at day 21 of ripening. Finally, no impact of salt content was observed on the growth of the spoiler Yarrowia lipolytica in soft cheeses. In contrast, reducing salt content increased spoiler growth in semi-hard cheeses, as highlighted by a greater development of Pseudomonas that led to an increase in cheese proteolysis and lipolysis. In conclusion, the effect of reducing salt content is highly dependent on the cheese type. This factor should thus be taken into account by the dairy industry when the reduction of salt content is being considered. Moreover, the quality of raw products, in particular, the level of spoiler microorganisms, must be controlled before use during dairy processes.


Assuntos
Queijo/análise , Queijo/microbiologia , Cloreto de Potássio/análise , Cloreto de Sódio/análise , Carga Bacteriana , Fenômenos Químicos , Dieta Hipossódica , Humanos , Lipólise , Proteólise , Pseudomonas/crescimento & desenvolvimento , Sensação , Compostos Orgânicos Voláteis/análise , Yarrowia/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...