Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Opt Mater ; 1(7): 1343-1349, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37533664

RESUMO

Optical microcavities grant manipulation over light-matter interactions and light propagation, enabling the fabrication of foundational optical and optoelectronic components. However, the materials used for high-performing systems, mostly bulk inorganics, are typically costly, and their processing is hardly scalable. In this work, we present an alternative way to fabricate planar optical resonators via solely solution processing while approaching the performances of conventional systems. Here, we couple fully solution-processed high dielectric contrast inorganic Bragg mirrors obtained by sol-gel deposition with the remarkable photoluminescence properties of CsPbBr3 perovskite nanocrystals. The approach yields microcavities with a quality factor of ∼220, which is a record value for solution-processed inorganic structures, and a strong emission redistribution resulting in a 3-fold directional intensity enhancement.

2.
ACS Omega ; 7(18): 15499-15506, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571840

RESUMO

Controlling the radiative rate of emitters with macromolecular photonic structures promises flexible devices with enhanced performances that are easy to scale up. For instance, radiative rate enhancement empowers low-threshold lasers, while rate suppression affects recombination in photovoltaic and photochemical processes. However, claims of the Purcell effect with polymer structures are controversial, as the low dielectric contrast typical of suitable polymers is commonly not enough to provide the necessary confinement. Here we show all-polymer planar microcavities with photonic band gaps tuned to the photoluminescence of a diketopyrrolopyrrole derivative, which allows a change in the fluorescence lifetime. Radiative and nonradiative rates were disentangled systematically by measuring the external quantum efficiencies and comparing the planar microcavities with a series of references designed to exclude any extrinsic effects. For the first time, this analysis shows unambiguously the dye radiative emission rate variations obtained with macromolecular dielectric mirrors. When different waveguides, chemical environments, and effective refractive index effects in the structure were accounted for, the change in the radiative lifetime was assigned to the Purcell effect. This was possible through the exploitation of photonic structures made of polyvinylcarbazole as a high-index material and the perfluorinated Aquivion as a low-index one, which produced the largest dielectric contrast ever obtained in planar polymer cavities. This characteristic induces the high confinement of the radiation electric field within the cavity layer, causing a record intensity enhancement and steering the radiative rate. Current limits and requirements to achieve the full control of radiative rates with polymer planar microcavities are also addressed.

3.
ACS Appl Mater Interfaces ; 14(17): 19806-19817, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35443778

RESUMO

Solution processing of highly performing photonic crystals has been a towering ambition for making them technologically relevant in applications requiring mass and large-area production. It would indeed represent a paradigm changer for the fabrication of sensors and for light management nanostructures meant for photonics and advanced photocatalytic systems. On the other hand, solution-processed structures often suffer from low dielectric contrast and poor optical quality or require complex deposition procedures due to the intrinsic properties of components treatable from solution. This work reports on a low-temperature sol-gel route between the alkoxides of Si and Ti and poly(acrylic acid), leading to stable polymer-inorganic hybrid materials with tunable refractive index and, in the case of titania hybrid, photoactive properties. Alternating thin films of the two hybrids allows planar photonic crystals with high optical quality and dielectric contrast as large as 0.64. Moreover, low-temperature treatments also allow coupling the titania hybrids with several temperature-sensitive materials including dielectric and semiconducting polymers to fabricate photonic structures. These findings open new perspectives in several fields; preliminary results demonstrate that the hybrid structures are suitable for sensing and the enhancement of the catalytic activity of photoactive media and light emission control.

4.
RSC Adv ; 12(15): 8924-8935, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424896

RESUMO

A novel thiophene derivative, namely 2,5-diisopropenylthiophene (DIT) was synthetized by Suzuki-Miyaura cross-coupling reaction (SMCCR). The influence of reaction parameters, such as temperature, solvent, stoichiometry of reagents, role of the base and reaction medium were thoroughly discussed in view of yield optimization and environmental impact minimization. Basic design of experiment (DoE) and multiple linear regression (MLR) modeling methods were used to interpret the obtained results. DIT was then employed as a comonomer in the copolymerization with waste elemental sulfur through a green process, inverse vulcanization (IV), to obtain sulfur-rich polymers named inverse vulcanized polymers (IVPs) possessing high refractive index (n ≈ 1.8). The DIT comonomer was purposely designed to (i) favor the IV process owing to the high reactivity of the isopropenyl functionalities and (ii) enhance the refractive index of the ensuing IVPs owing to the presence of the sulfur atom itself and to the high electronic polarizability of the π-conjugated thiophene ring. A series of random sulfur-r-diisopropenylthiophene (S-r-DIT) copolymers with sulfur content from 50 up to 90 wt% were synthesized by varying the S/DIT feed ratio. Spectroscopic, thermal and optical characterizations of the new IVPs were carried out to assess their main chemical-physical features.

5.
ACS Appl Mater Interfaces ; 14(12): 14550-14560, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306809

RESUMO

Preventing solar heating is nowadays of paramount interest in energy savings and health preservation. For instance, in building thermalization solar heating consumes an excess of energy leading to harmful CO2 emissions, while in food and beverage packaging it may lead to variation of organoleptic properties or even health issues. The phenomenon is attributed to the large presence of moieties with highly absorbing vibrational overtones and combination bands in the near-infrared spectral region that induces heating in water, moisture, and in polymers used in packaging. Thus, reducing and controlling the light absorbed by these materials with effective low-cost passive systems can play a major role in energy saving and health preservation. In this work, different polymer dielectric mirrors are reported, made of poly(N-vinylcarbazole) and either cellulose acetate or poly(acrylic acid), and able to selectively reflect near-infrared radiation while maintaining high transparency in the visible range. To this end, simple, tandem, and superperiodic mirrors are used to shield radiation impinging on samples of water and paraffin, demonstrating shielding efficiencies up to 52% with respect to unshielded references, promising a new paradigm to solve thermal management issues.

6.
ACS Omega ; 7(51): 48564-48571, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591128

RESUMO

Amphiphilic aryl radicals generated upon visible light irradiation of arylazo sulfones have been exploited in the development of a solventylation strategy via hydrogen atom transfer (HAT). The present protocol succeeded in the versatile functionalization of various olefins with carbon-centered radicals deriving from acetone, acetonitrile, chloroform, methylene chloride, nitromethane, methyl acetate, and methyl formate under metal- and photocatalyst-free conditions. The direct addition of the aryl radicals onto the olefin substrates was suppressed under high dilution conditions.

7.
Polymers (Basel) ; 13(10)2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-34065708

RESUMO

Poly(vinyl alcohol) nanofibrous mats containing ad hoc synthesized gold nanostructures were prepared via a single-step electrospinning procedure and investigated as a novel composite platform with several potential applications. Specifically, the effect of differently shaped and sized gold nanostructures on the resulting mat physical-chemical properties was investigated. In detail, nearly spherical nanoparticles and nanorods were first synthesized through a chemical reduction of gold precursors in water by using (hexadecyl)trimethylammonium bromide as the stabilizing agent. These nanostructures were then dispersed in poly(vinyl alcohol) aqueous solutions to prepare nanofibrous mats, which were then stabilized via a humble thermal treatment able to enhance their thermal stability and water resistance. Remarkably, the nanostructure type was proven to influence the mesh morphology, with the small spherical nanoparticles and the large nanorods leading to thinner well defined or bigger defect-rich nanofibers, respectively. Finally, the good mechanical properties shown by the prepared composite mats suggest their ease of handleability thereby opening new perspective applications.

8.
Mater Sci Eng C Mater Biol Appl ; 124: 112067, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947560

RESUMO

Alginate-based electrospun nanofibers prepared via electrospinning technique represent a class of materials with promising applications in the biomedical and pharmaceutical industries. However, to date, the effect of alginate molecular mass and block composition on the biological response of such systems remains to some extent unclear. As such, in the present work, three alginates (i.e., M.pyr, L.hyp, A.nod) with different molecular features are employed to prepare nanofibers whose ability to promote cell adhesion is explored by using both skin and bone cell lines. Initially, a preliminary investigation of the raw materials is carried out via rheological and zeta-potential measurements to determine the different grade of polyelectrolyte behaviour of the alginate samples. Specifically, both the molecular mass and block composition are found to be important factors affecting the alginate response, with long chains and a predominance of guluronic moieties leading to a marked polyelectrolyte nature (i.e., lower dependence of the solution viscosity upon the polymer concentration). Subsequently, physically crosslinked alginate nanofibrous mats are first morphologically characterized via both scanning electron and atomic force microscopy, which show a homogenous and defect-free structure, and their biological response is then evaluated. Noticeably, fibroblast and keratinocyte cell lines do not show significant differences in terms of cell adhesion on the three mats (i.e., 30-40% and 10-20% with respect to the seeded cells, respectively), with the formers presenting a greater affinity toward the alginate-based nanofibers. Conversely, both the investigated osteoblast cells are characterized by a distinct behaviour depending on the alginate type. Specifically, polysaccharide samples with an evident polyelectrolyte nature are found to better promote cell viability (i.e., cell adhesion in the range 15-36% with respect to seeded cells) compared to the ones displaying a nearly neutral behaviour (i.e., cell adhesion in the range 5-25% with respect to seeded cells). Therefore, the obtained results, despite being preliminary, suggest that the alginate type (i.e., molecular structure properties) may play a topical role in conditioning the efficiency of healing patches for bone reparation, but it has a negligible effect in the case of skin regeneration.


Assuntos
Alginatos , Nanofibras , Adesão Celular , Estrutura Molecular , Cicatrização
9.
Macromol Rapid Commun ; 42(12): e2000717, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33998098

RESUMO

Knowledge of the transitions occurring during the formation of ion-conducting polymer films and membranes is crucial to optimize material performances. The use of non-destructive scattering techniques that offer high spatio-temporal resolution is essential to investigating such structural transitions, especially when combined with complementary techniques probing at different time and spatial scales. Here, a simultaneous multi-technique study is performed on the membrane formation mechanism and the subsequent hydration of two ion-conducting polymers, the well-known commercial Nafion and a synthesized sulfonated poly(phenylene sulfide sulfone) (sPSS). The X-ray data distinguish the multi-stage processes occurring during drying. A sol-gel-membrane transition sequence is observed for both polymers. However, while Nafion membrane evolves from a micellar solution through the formation of a phase-separated gel, forming an oriented supported membrane, sPSS membrane evolves from a solution of dispersed polyelectrolyte chains via formation of an inhomogeneous gel, showing assembly and ionic phase separation only at the end of the drying process. Impedance spectroscopy data confirm the occurrence of the sol-gel transitions, while gel-membrane transitions are detected by optical reflectance data. The simultaneous multi-technique approach presented here can connect the nanoscale to the macroscopic behavior, unraveling information essential to optimize membrane formation of different ion-conducting polymers.


Assuntos
Membranas Artificiais , Prótons , Hidratação , Polímeros , Sulfonas
10.
J Pers Med ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809879

RESUMO

BACKGROUND: The COVID-19 pandemic continues to ravage the human population; therefore, multiple prevention and intervention protocols are being rapidly developed. The aim of our study was to develop a new chemo-prophylactic/-therapeutic strategy that effectively prevents COVID-19 and related complications. METHODS: In in vitro studies, COVID-19 infection-sensitive cells were incubated with human oropharyngeal fluids containing high SARS-CoV-2 loads. Levels of infection were determined via intra-cellular virus loads using quantitative PCR (qPCR). Efficacies for infection prevention were determined using several antiviral treatments: lipid-encapsulated ozonized oil (HOO), water-soluble HOO (HOOws), UV, and hydrogen peroxide. In in vivo studies, safety and efficacy of HOO in fighting COVID-19 infection was evaluated in human subjects. RESULTS: HOO in combination with HOOws was the only treatment able to fully neutralize SARS-CoV-2 as well as its capacity to penetrate and reproduce inside sensitive cells. Accordingly, the feasibility of using HOO/HOOws was tested in vivo. Analysis of expired gas in healthy subjects indicates that HOO administration increases oxygen availability in the lung. For our human studies, HOO/HOOws was administered to 52 cancer patients and 21 healthy subjects at high risk for COVID-19 infection, and all of them showed clinical safety. None of them developed COVID-19 infection, although an incidence of at least 11 cases was expected. Efficacy of HOO/HOOws was tested in four COVID-19 patients obtaining recovery and qPCR negativization in less than 10 days. CONCLUSIONS: Based on our experience, the HOO/HOOws treatment can be administered at standard doses (three pills per day) for chemo-prophylactic purposes to healthy subjects for COVID-19 prevention and at high doses (up to eight pills per day) for therapeutic purposes to infected patients. This combined prevention strategy can provide a novel protocol to fight the COVID-19 pandemic.

11.
J Org Chem ; 86(8): 5845-5851, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33822607

RESUMO

For the first time, a detailed study on the photophysical properties of variously substituted diazoketones and on their photoreactivity under blue LED irradiation was carried out. Despite very limited absorbance in the visible region, we have demonstrated that, independently from their structure, α-diazoketones all undergo a very efficient Wolff rearrangement. Contrarily to the same UV-mediated reaction, where photons can give rise to side processes, in this case, almost all absorbed photons are selective and effective, and the quantum yield is close to 100%. If the rearrangement is carried out in the presence of isocyanides and carboxylic acids/silanols, the photoreactivity is not affected, and the resulting ketenes can afford α-acyloxy- and α-silyloxyacrylamides through two distinct multicomponent reactions, performed both in batch and under continuous flow, with improved selectivity and broader scope. These photoinduced multicomponent reactions can be coupled with other visible-light-mediated transformations, thus increasing the diversity of the molecules obtainable by this approach.

12.
J Am Chem Soc ; 142(49): 20883-20891, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33245855

RESUMO

We present an innovative method for the synthesis of boron carbon nitride thin film materials in a simple furnace setup, using commonly available solid precursors and relatively low temperature compared to previous attempts. The as-prepared structural and optical properties of thin films are tuned via the precursor content, leading to a sp2-conjugated boron nitride-carbon nitride mixed material, instead of the commonly reported boron nitride-graphene phase segregation, with tunable optical properties such as band gap and fluorescence.

13.
Int J Biol Macromol ; 165(Pt B): 1939-1948, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33098895

RESUMO

Alginate-based membranes embedding zinc oxide nanoparticles are prepared via electrospinning and exploited as biosorbent materials. The mats exhibit a uniform texture characterized by the presence of nanofibers with an average diameter of 100 nm and interconnected voids of 140 nm average size. UV-vis spectrophotometric tests were performed to evaluate the membrane uptake/release performances by employing aqueous solutions of Methylene Blue (MB) and Congo Red (CR), chosen as model probes of basic and acidic type, respectively. Isotherm kinetics and equilibrium data are fitted with theoretical models to acquire information on the process mechanisms and rates. At low dosage, the mats show comparable adsorption capacity toward both dyes with limited selectivity for the cationic one suggesting that the process is conditioned by the macroporous structure of the membranes. Moreover, a good reusability for achieved for MB after simple washing steps in deionized water. Remarkably, the desorption efficacy under physiological-like conditions turn out to be very high for MB but reduced for CR indicating that the release process is affected by ionic interactions. Based on the results, the electrospun membranes reveal potential as innovative, low-cost, and versatile absorbent platforms to be used in drug delivery applications as well as in purification processes.


Assuntos
Alginatos/química , Membranas Artificiais , Nanocompostos/química , Adsorção , Vermelho Congo/química , Difusão , Cinética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Azul de Metileno/química , Nanocompostos/ultraestrutura , Espectrometria por Raios X , Temperatura
14.
Micromachines (Basel) ; 11(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517034

RESUMO

Thanks to its excellent semiconductor properties, like high charge carrier mobility and absorption coefficient in the near infrared spectral region, GaAs is the material of choice for thin film photovoltaic devices. Because of its high reflectivity, surface microstructuring is a viable approach to further enhance photon absorption of GaAs and improve photovoltaic performance. To this end, metal-assisted chemical etching represents a simple, low-cost, and easy to scale-up microstructuring method, particularly when compared to dry etching methods. In this work, we show that the etched GaAs (black GaAs) has exceptional light trapping properties inducing a 120 times lower surface reflectance than that of polished GaAs and that the structured surface favors photon recycling. As a proof of principle, we investigate photon reabsorption in hybrid GaAs:poly (3-hexylthiophene) heterointerfaces.

15.
Adv Mater ; 32(10): e1908140, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31995254

RESUMO

Brilliance usually refers to the light reflected by the facets of a gemstone such as diamond due to its high refractive index. Nowadays, high-refractive-index materials find application in many optical and photonic devices and are mostly of inorganic nature. However, these materials are usually obtained by toxic or expensive production processes. Herein, the synthesis of a thin-film organic semiconductor, namely, polymeric carbon nitride, by thermal chemical vapor deposition is presented. Among polymers, this organic material combines the highest intrinsic refractive index reported so far with high transparency in the visible spectrum, even reaching the range of diamond. Eventually, the herein presented deposition of high quality thin films and their optical characteristics open the way for numerous new applications and devices in optics, photonics, and beyond based on organic materials.

16.
RSC Adv ; 10(25): 14958-14964, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497145

RESUMO

Photonic crystals are a unique tool to modify the photoluminescence of light-emitting materials. A variety of optical effects have been demonstrated by infiltrating opaline structures with photoactive media. On the other hand, the fabrication of such structures includes complex infiltration steps, that often affect the opal lattice and decrease the efficiency of light emission control. In this work, silica nanospheres were directly functionalized with rhodamine B to create an emitting shell around the dielectric core. Simple tuning of the microsphere preparation conditions allows selecting the appropriate sphere diameter and polydispersity index approaching 5%. These characteristics allow facile self-assembling of the nanospheres into three-dimensional photonic crystals whose peculiar density of photonic states at the band-gap edges induces spectral redistribution of the rhodamine B photoluminescence. The possibility to employ the new stable structure as sensor is also investigated. As a proof of principle, we report the variation of light emission obtained by exposure of the opal to vapor of chlorobenzene.

17.
ACS Appl Mater Interfaces ; 11(18): 16872-16880, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30990014

RESUMO

The lack of cost-effective systems for the assessment of air pollutants is a concern for health and safety in urban and industrial areas. The use of polymer thin films as label-free colorimetric sensors featuring specific interactions with pollutants would then represent a paradigm shift in environmental monitoring and packaging technologies, allowing to assess air quality, formation of byproducts in closed environment, and the barrier properties of the polymers. To this end, all-polymer distributed Bragg reflectors represent a promising approach toward a reliable and cost-effective transduction of chemical stimuli and effective colorimetric label-free selective detectors. We show selectivity attained by specific interactions between the polymer and analytes. Such interactions drive the analyte intercalation through the polymer structure and its kinetics, converting it in a dynamic optical response which is at the basis of the Flory-Huggins photonic sensors. The multivariate analyses of the response kinetics also allow distinguishing binary mixtures. Additionally, we demonstrate that such optical responses can be used to esteem the diffusion coefficients of small molecules within polymer media via simple UV-vis spectroscopy retrieving data comparable to those obtained with state-of-the-art gravimetric procedures. Last, we assess the figures of merit of the sensors in terms of lower detection limit, sensitivity, and reversibility, demonstrating that such devices can pave the way to an innovative, simple, and low-cost detection method integrable to in situ assessment of barrier polymers used for the encapsulation of optoelectronic devices, food packaging, and goods storage in general.

18.
Nanoscale ; 11(18): 8978-8983, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31017152

RESUMO

Thanks to a high photoluminescence quantum yield, large charge carrier diffusion, and ease of processing from solution, perovskite materials are becoming increasingly interesting for flexible optoelectronic devices. However, their deposition requires wide range solvents that are incompatible with many other flexible and solution-processable materials, including polymers. Here, we show that methylammonium lead iodide (MAPbI3) films can be directly synthesized on all-polymer microcavities via simple addition of a perfluorinated layer which protects the polymer photonic structure from the perovskite processing solvents. The new processing provides microcavities with a quality factor Q = 155, that is in agreement with calculations and the largest value reported so far for fully solution processed perovskite microcavities. Furthermore, the obtained microcavity shows strong spectral and angular redistribution of the the MAPbI3 photoluminescence spectrum, which shows a 3.5 fold enhanced intensity with respect to the detuned reference. The opportunity to control and modify the emission of a MAPbI3 film via a simple spun-cast polymer structure is of great interest in advanced optoelectronic applications requiring high colour purity or emission directionality.

19.
ACS Appl Mater Interfaces ; 10(39): 33434-33440, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30191706

RESUMO

Large area surface microstructuring is commonly employed to suppress light reflection and enhance light absorption in silicon photovoltaic devices, photodetectors, and image sensors. To date, however, there are no simple means to control the surface roughness of III-V semiconductors by chemical processes similar to the metal-assisted chemical etching of black Si. Here, we demonstrate the anisotropic metal-assisted chemical etching of GaAs wafers exploiting the lower etching rate of the monoatomic Ga<111> and <311> planes. By studying the dependence of this process on different crystal orientations, we propose a qualitative reaction mechanism responsible for the self-limiting anisotropic etching and show that the reflectance of the roughened surface of black GaAs reduces up to ∼50 times compared to polished wafers, nearly doubling its absorption. This method provides a new, simple, and scalable way to enhance light absorption and power conversion efficiency of GaAs solar cells and photodetectors.

20.
ACS Omega ; 3(7): 7517-7522, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458907

RESUMO

We report on the highly sensitive optical and colorimetric detection of perfluorinated compounds in the vapor phase achieved by all-polymer dielectric mirrors. High optical quality and uniformly distributed Bragg reflectors were fabricated by alternating thin films of poly(N-vinylcarbazole) and Hyflon AD polymers as high and low refractive index medium, respectively. A new processing procedure has been developed to compatibilize the deposition of poly(N-vinylcarbazole) with the highly solvophobic Hyflon AD polymer layers to achieve mutual processability between the two polymers and fabricate the devices. As a proof of principle, sensing measurements were performed using the Galden HT55 polymer as a prototype of the perfluorinated compound. The Bragg stacks show a strong chromatic response upon exposure to this compound, clearly detectable as both spectral and intensity variations. Conversely, Bragg mirrors fabricated without fluorinated polymers do not show any detectable response, demonstrating that the Hyflon AD polymer acts as the active and selective medium for sensing perfluorinated species. These results demonstrate that organic dielectric mirrors containing perfluorinated polymers can represent an innovative colorimetric monitoring system for fluorinated compounds, suitable to improve both environmental safety and quality of life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...