Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240452

RESUMO

A small protein, Mitoregulin (Mtln), localizes in mitochondria and contributes to oxidative phosphorylation and fatty acid metabolism. Mtln knockout mice develop obesity on a high-fat diet, demonstrating elevated cardiolipin damage and suboptimal creatine kinase oligomerization in muscle tissue. Kidneys heavily depend on the oxidative phosphorylation in mitochondria. Here we report kidney-related phenotypes in aged Mtln knockout mice. Similar to Mtln knockout mice muscle mitochondria, those of the kidney demonstrate a decreased respiratory complex I activity and excessive cardiolipin damage. Aged male mice carrying Mtln knockout demonstrated an increased frequency of renal proximal tubules' degeneration. At the same time, a decreased glomerular filtration rate has been more frequently detected in aged female mice devoid of Mtln. An amount of Mtln partner protein, Cyb5r3, is drastically decreased in the kidneys of Mtln knockout mice.


Assuntos
Cardiolipinas , Proteínas Mitocondriais , Masculino , Feminino , Camundongos , Animais , Cardiolipinas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Rim/metabolismo , Camundongos Knockout
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108753

RESUMO

Small peptides compose a large share of the mitochondrial proteome. Mitoregulin (Mtln) is a mitochondrial peptide known to contribute to the respiratory complex I functioning and other processes in mitochondria. In our previous studies, we demonstrated that Mtln knockout mice develop obesity and accumulate triglycerides and other oxidation substrates in serum, concomitant with an exhaustion of tricarboxylic acids cycle intermediates. Here we examined the functional role of Mtln in skeletal muscles, one of the major energy consuming tissues. We observed reduced muscle strength for Mtln knockout mice. Decrease of the mitochondrial cardiolipin and concomitant increase in monolysocardiolipin concentration upon Mtln inactivation is likely to be a consequence of imbalance between oxidative damage and remodeling of cardiolipin. It is accompanied by the mitochondrial creatine kinase octamer dissociation and suboptimal respiratory chain performance in Mtln knockout mice.


Assuntos
Cardiolipinas , Creatina , Camundongos , Animais , Cardiolipinas/metabolismo , Creatina/metabolismo , Mitocôndrias , Músculo Esquelético/metabolismo , Peptídeos/metabolismo , Camundongos Knockout , Mitocôndrias Musculares
3.
Biochimie ; 204: 136-139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36174793

RESUMO

Mitoregulin (Mtln) is a recently identified 56 amino acid long mitochondrial peptide conserved in vertebrates. Mtln is known to enhance function of respiratory complex I, which is likely mediated by modulation of lipid composition. To address an influence of Mtln gene on the metabolism we created knockout mice deficient in Mtln gene. In line with accumulation of triglycerides observed earlier on a model of Mtln knockout cell lines, we observed Mtln KO mice to develop obesity on a high fat diet. An increased weight gain could be attributed to enhanced fat accumulation according to the magnetic resonance live imaging. In addition, Mtln KO mice demonstrate elevated serum triglycerides and other oxidation substrates accompanied by an exhaustion of tricarboxylic acids cycle intermediates, suggesting suboptimal oxidation of respiration substrates by mitochondria lacking Mtln.


Assuntos
Mitocôndrias , Aumento de Peso , Camundongos , Animais , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Triglicerídeos/metabolismo , Camundongos Knockout , Dieta Hiperlipídica/efeitos adversos , Estresse Oxidativo , Metabolismo dos Lipídeos
4.
Front Neurosci ; 15: 705590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421525

RESUMO

The aim of the study was to develop better anxiolytics and antidepressants. We focused on GABA A receptors and the α2δ auxiliary subunit of V-gated Ca2+ channels as putative targets because they are established as mediators of efficacious anxiolytics, antidepressants, and anticonvulsants. We further focused on short peptides as candidate ligands because of their high safety and tolerability profiles. We employed a structural bioinformatics approach to develop novel tetrapeptides with predicted affinity to GABA A receptors and α2δ. In silico docking studies of one of these peptides, LCGA-17, showed a high binding score for both GABA A receptors and α2δ, combined with anxiolytic-like properties in a Danio rerio behavioral screen. LCGA-17 showed anxiolytic-like effects in the novel tank test, the light-dark box, and the social preference test, with efficacy comparable to fluvoxamine and diazepam. In binding assays using rat brain membranes, [3H]-LCGA-17 was competed more effectively by gabapentinoid ligands of α2δ than ligands of GABA A receptors, suggesting that α2δ represents a likely target for LCGA-17. [3H]-LCGA-17 binding to brain lysates was unaffected by competition with ligands for GABAB, glutamate, dopamine, serotonin, and other receptors, suggesting specific interaction with α2δ. Dose-finding studies in mice using acute administration of LCGA-17 (i.p.) demonstrated anxiolytic-like effects in the open field test, elevated plus maze, and marble burying tests, as well as antidepressant-like properties in the forced swim test. The anxiolytic effects were effectively blocked by bicuculline. Therefore, LCGA-17 is a novel candidate anxiolytic and antidepressant that may act through α2δ, with possible synergism by GABA A receptors.

5.
Life Sci ; 266: 118887, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33316264

RESUMO

A lot of animal models are developed with aim to advance in atrial fibrillation (AF) understanding. The hybrid B6CBAF1 mice are used extensively as a background to create manifestation of various diseases, however, their atrial electrophysiology, autonomic sympathetic innervation of the heart and potential for AF investigation is poorly characterized. In the present study we used ECG and microelectrode recordings from multicellular atrial preparations to reveal attributes of atrial electrical activity in B6CBAF1. Also, experiments with a fluorescent false monoamine neurotransmitter and glyoxylic acid-based staining were carried out to characterize functionally and morphologically catecholaminergic innervation of the B6CBAF1 atria. Atrial myocardium of B6CBAF1 is highly prone to ectopic automaticity and exhibits abnormal spontaneous action potential accompanied by multiple postdepolarizations that result in proarrhythmic triggered activity unlike two parental C57Bl/6 and CBA strains. In vivo experiments revealed that B6CBAF1 hybrids are more susceptible to the norepinephrine induced AF. Also, sympathetic nerve terminals are partially dysfunctional in B6CBAF1 revealing lower ability to accumulate and release neurotransmitters unlike two parental strains. The analysis of the heart rate variability revealed suppressed sympathetic component of the autonomic heart control in B6CBAF1. The organization of sympathetic innervation is very similar morphologically in all three murine strains however the abundance of non-bifurcated catecholamine-positive fibers in B6CBAF1 was increased. These results suggest that B6CBAF1 mice exhibit enhanced intrinsic atrial proarrhythmicity, while the abnormalities of sympathetic neurotransmitter cycling probably underlie disturbed autonomic heart control.


Assuntos
Fibrilação Atrial/patologia , Cardiomiopatias/patologia , Átrios do Coração/inervação , Átrios do Coração/patologia , Sistema Nervoso Simpático/patologia , Potenciais de Ação , Animais , Feminino , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
6.
Alcohol ; 83: 17-28, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31260795

RESUMO

Chronic ethanol consumption in high doses is associated with constitutively elevated activity of the serum alcohol dehydrogenase I (ADH I) isoform, which demonstrates a high affinity not only for ethanol but also for a number of bioamine metabolites. Such excessive ADH activity is probably associated with disruptions in the metabolism of neurotransmitters (dopamine, serotonin, and norepinephrine) and subsequent long-term changes in the activity of their receptors. Ultimately, a stable depressive-like condition contributes to the development of patients' craving for ethanol intake, frequent disruptions during therapy, and low efficacy of treatment. We applied active immunization against ADH to investigate its efficacy in the reduction of excessive serum ADH activity and regulation of ethanol consumption by chronically ethanol-fed Wistar rats (15% ethanol, 4 months, free-choice method), and we analyzed its ability to influence the levels of bioamines in the brain. Immunization (2 injections, 2-week intervals) was performed using a combination of recombinant horse ADH isozyme as an antigen and 2% aluminum hydroxide-based adjuvant. The efficacy of immunization was demonstrated by the production of high titers of ADH-specific antibodies, which was consistent with the significantly reduced ADH activity in the serum of chronically ethanol-fed rats. On the 26th day after the first vaccine injection, we registered significantly lower levels of alcohol consumption compared to ethanol-fed control animals, and the difference reached 16% on the 49th day of the experiment. These observations were accompanied by data that showed reduced levels of ethanol preference in immunized rats. Chronic alcohol drinking led to a decrease in dopamine and DOPAL (a direct dopamine metabolite and a high-affinity ADH substrate) levels in the striatum,while immunization neutralized this effect. Additionally, we observed that inhibition of serum ADH activity caused a decrease in peak dopamine levels during acute alcohol intake in chronically ethanol-fed rats during ethanol withdrawal that was associated with reduced tyrosine hydroxylase activity in the striatum. The obtained data suggest a significant contribution of ADH to the changes in neurotransmitter systems during chronic alcohol consumption and make available new prospects for developing innovative strategies for treatment of excessive alcohol intake.


Assuntos
Álcool Desidrogenase/sangue , Álcool Desidrogenase/imunologia , Alcoolismo/enzimologia , Vacinação , Álcool Desidrogenase/metabolismo , Consumo de Bebidas Alcoólicas/prevenção & controle , Alcoolismo/terapia , Animais , Anticorpos/sangue , Dopamina/sangue , Etanol/administração & dosagem , Etanol/sangue , Neurotransmissores/metabolismo , Ratos , Ratos Wistar
7.
Molecules ; 24(2)2019 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-30642123

RESUMO

Peptides are promising drug candidates due to high specificity and standout safety. Identification of bioactive peptides de novo using molecular docking is a widely used approach. However, current scoring functions are poorly optimized for peptide ligands. In this work, we present a novel algorithm PeptoGrid that rescores poses predicted by AutoDock Vina according to frequency information of ligand atoms with particular properties appearing at different positions in the target protein's ligand binding site. We explored the relevance of PeptoGrid ranking with a virtual screening of peptide libraries using angiotensin-converting enzyme and GABAB receptor as targets. A reasonable agreement between the computational and experimental data suggests that PeptoGrid is suitable for discovering functional leads.


Assuntos
Descoberta de Drogas , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Algoritmos , Animais , Simulação por Computador , Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , Peixe-Zebra
8.
Physiol Behav ; 179: 458-466, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28735060

RESUMO

Alcohol dehydrogenases (ADH) are key enzymes of ethanol metabolism that mediate its oxidation to acetaldehyde. ADHs are also able to oxidize some types of neurotransmitters such as dopamine, serotonin and norepinephrine. Increased level of ADHs activity, induced by chronic alcohol consumption, is presumably associated with disturbed neurotransmitters metabolism that leads to stable alcohol craving. As earlier reported, intraperitoneal administration of 4-methilpirasole (non-specific inhibitor of ADHs) has shown to provide a short-term anti-alcoholic effect, but individual roles of ADH isoforms in this process were still unclear. The aim of this work was to study the roles of brain and serum ADH isoforms in alcohol consumption and neurotransmitter metabolism in the rats. In the study we used specific-pathogen-free (SPF) Wistar rats chronically alcoholized with 15% ethanol. 4-methilpirasole intranasal administration in small doses led to local inhibition of ADH III activity in the brain estimated by spectrophotometric assay. It correlated with dose-dependent reduction of dopamine concentration and increased level of its metabolic products in the brain but did not influence alcohol consumption. These data allowed us to propose an important role of brain ADHs (predominantly ADH III) in metabolism of dopamine in chronically alcoholized rats but not in regulation of alcohol consumption. To evaluate the role of serum ADH isoforms we immunized the rats with recombinant horse ADH that led to production of high levels of cross-reactive anti-ADH antibodies verified by ELISA assay. Immunization led to 30% decrease in alcohol consumption and recovery of general behavioral parameters such as motor activity, anxiety and depression level. At the same time active immunization did not cause any impairments in animal blood composition. We can conclude that immunization against ADHs appeared to be a safe way to decrease alcohol consumption that could be possibly associated with neurotransmitters metabolism correction.


Assuntos
Álcool Desidrogenase/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Encéfalo/enzimologia , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/imunologia , Consumo de Bebidas Alcoólicas/imunologia , Consumo de Bebidas Alcoólicas/terapia , Animais , Anticorpos/metabolismo , Biomarcadores/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Fomepizol , Cavalos , Isoenzimas/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Pirazóis/farmacologia , Ratos Wistar , Proteínas Recombinantes/administração & dosagem , Reflexo de Endireitamento/efeitos dos fármacos , Reflexo de Endireitamento/fisiologia , Organismos Livres de Patógenos Específicos , Estupor/induzido quimicamente , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...