Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 8(1): 142, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770440

RESUMO

Elevated low-density lipoprotein cholesterol (LDL-C) is an important risk factor in the development of atherosclerotic cardiovascular disease (ASCVD). Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of LDL-C metabolism, have emerged as promising approaches for reducing elevated LDL-C levels. Here, we evaluated the cholesterol-lowering efficacy of virus-like particle (VLP) based vaccines that target epitopes found within the LDL receptor (LDL-R) binding domain of PCSK9. In both mice and non-human primates, a bivalent VLP vaccine targeting two distinct epitopes on PCSK9 elicited strong and durable antibody responses and lowered cholesterol levels. In macaques, a VLP vaccine targeting a single PCSK9 epitope was only effective at lowering LDL-C levels in combination with statins, whereas immunization with the bivalent vaccine lowered LDL-C without requiring statin co-administration. These data highlight the efficacy of an alternative, vaccine-based approach for lowering LDL-C.

2.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37292981

RESUMO

Elevated low-density lipoprotein cholesterol (LDL-C) is an important risk factor in the development of atherosclerotic cardiovascular disease (ASCVD). Inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of LDL-C metabolism, have emerged as promising approaches for reducing elevated LDL-C levels. Here, we evaluated the cholesterol lowering efficacy of virus-like particle (VLP) based vaccines that target epitopes found within the LDL receptor (LDL-R) binding domain of PCSK9. In both mice and non-human primates, a bivalent VLP vaccine targeting two distinct epitopes on PCSK9 elicited strong and durable antibody responses and lowered cholesterol levels. In macaques, a VLP vaccine targeting a single PCSK9 epitope was only effective at lowering LDL-C levels in combination with statins, whereas immunization with the bivalent vaccine lowered LDL-C without requiring statin co-administration. These data highlight the efficacy of an alternative, vaccine-based approach for lowering LDL-C.

3.
Metabolites ; 12(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35629938

RESUMO

BACKGROUND: Metabolic Syndrome (MetS) is a clinical diagnosis where patients exhibit three out of the five risk factors: hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol, hyperglycemia, elevated blood pressure, or increased abdominal obesity. MetS arises due to dysregulated metabolic pathways that culminate with insulin resistance and put individuals at risk to develop various comorbidities with far-reaching medical consequences such as non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease. As it stands, the exact pathogenesis of MetS as well as the involvement of the gastrointestinal tract in MetS is not fully understood. Our study aimed to evaluate intestinal health in human subjects with MetS. METHODS: We examined MetS risk factors in individuals through body measurements and clinical and biochemical blood analysis. To evaluate intestinal health, gut inflammation was measured by fecal calprotectin, intestinal permeability through the lactulose-mannitol test, and utilized fecal metabolomics to examine alterations in the host-microbiota gut metabolism. RESULTS: No signs of intestinal inflammation or increased intestinal permeability were observed in the MetS group compared to our control group. However, we found a significant increase in 417 lipid features of the gut lipidome in our MetS cohort. An identified fecal lipid, diacyl-glycerophosphocholine, showed a strong correlation with several MetS risk factors. Although our MetS cohort showed no signs of intestinal inflammation, they presented with increased levels of serum TNFα that also correlated with increasing triglyceride and fecal diacyl-glycerophosphocholine levels and decreasing HDL cholesterol levels. CONCLUSION: Taken together, our main results show that MetS subjects showed major alterations in fecal lipid profiles suggesting alterations in the intestinal host-microbiota metabolism that may arise before concrete signs of gut inflammation or intestinal permeability become apparent. Lastly, we posit that fecal metabolomics could serve as a non-invasive, accurate screening method for both MetS and NAFLD.

4.
Mol Cancer Ther ; 15(12): 2853-2862, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27671528

RESUMO

Chemotherapeutic resistance remains a challenge in the treatment of ovarian carcinoma, especially in recurrent disease. Despite the fact that most patients with newly diagnosed tumors attain complete remission following cytoreductive surgery and chemotherapy, ovarian carcinoma has a recurrence rate that exceeds 75%. The ATP-binding cassette family G member 2 (ABCG2) efflux protein has been described as one mechanism that confers multiple-drug resistance to solid tumors and contributes to topotecan resistance in ovarian carcinoma. In fact, one clinical trial demonstrated ABCG2 expression in all patients with primary or recurrent ovarian carcinoma. On the basis of our previous work, we hypothesized that three compounds (CID44640177, CID1434724, and CID46245505), which represent a new piperazine-substituted pyrazolo[1,5]pyrimidine substructure class of ABCG2-specific antagonists, would restore chemosensitivity to drug-resistant ovarian cancer in vitro and in vivo To address the treatment difficulties associated with chemotherapeutic resistance in ovarian cancer, we combined each compound (CID44640177, CID1434724, and CID46245505) with topotecan and administered the mixture to chemoresistant Igrov1/T8 ovarian cancer cells in vitro and Igrov1/T8 xenografts in CB-17 SCID mice. We found that only nanomolar concentrations of each ABCG2 inhibitor in combination with topotecan were required to restore chemosensitivity to Igrov1/T8 cells in vitro In vivo, substantial tumor reduction was achieved with each compound in 4 days, with CID1434724 causing the largest reduction in excess of 60%. No signs of secondary toxic effects were observed with the ABCG2 antagonists. These novel compounds should be viewed as promising drug candidates to reverse ABCG2-mediated chemoresistance. Mol Cancer Ther; 15(12); 2853-62. ©2016 AACR.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/metabolismo , Topotecan/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/administração & dosagem , Carcinoma/tratamento farmacológico , Carcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Topotecan/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Phys Med Biol ; 59(13): 3319-35, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24874577

RESUMO

As new magnetic nanoparticle-based technologies are developed and new target cells are identified, there is a critical need to understand the features important for magnetic isolation of specific cells in fluids, an increasingly important tool in disease research and diagnosis. To investigate magnetic cell collection, cell-sized spherical microparticles, coated with superparamagnetic nanoparticles, were suspended in (1) glycerine-water solutions, chosen to approximate the range of viscosities of bone marrow, and (2) water in which 3, 5, 10 and 100% of the total suspended microspheres are coated with magnetic nanoparticles, to model collection of rare magnetic nanoparticle-coated cells from a mixture of cells in a fluid. The magnetic microspheres were collected on a magnetic needle, and we demonstrate that the collection efficiency versus time can be modeled using a simple, heuristically-derived function, with three physically-significant parameters. The function enables experimentally-obtained collection efficiencies to be scaled to extract the effective drag of the suspending medium. The results of this analysis demonstrate that the effective drag scales linearly with fluid viscosity, as expected. Surprisingly, increasing the number of non-magnetic microspheres in the suspending fluid results increases the collection of magnetic microspheres, corresponding to a decrease in the effective drag of the medium.


Assuntos
Separação Celular/instrumentação , Fenômenos Magnéticos , Modelos Biológicos , Agulhas , Microesferas , Nanopartículas/química , Poliestirenos/química , Fatores de Tempo
6.
Health (Irvine Calif) ; 5(5A)2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24224072

RESUMO

PURPOSE: In acute lymphoblastic leukemia (ALL), multidrug resistance is often mediated by ATPase Binding Cassette (ABC) proteins, which principally involve ABCB1 (multidrug resistance 1, MDR1) and ABCC1 (multidrug resistance protein 1, MRP1). However, direct comparisons between the differential effects of ABCB1 and ABCC1 have been difficult, since identical cell lines with differential expression of these transporters have not been developed. EXPERIMENTAL DESIGN: In this study, we developed and compared the biological profiles of Jurkat cell lines that selectively over-expressed ABCB1 and ABCC1. Vincristine (VCR) plays an important role in the treatment of T-lineage ALL (T-ALL), and is often the first drug given to newly-diagnosed patients. Because of its importance in treatment, we provided escalating, sub-lethal doses of VCR to Jurkat cells, and extended our observations to expression profiling of newly diagnosed patients with T-ALL. RESULTS: We found that VCR-resistant cells over-expressed ABCC1 nearly 30-fold. The calcein AM assay confirmed that VCR-resistant cells actively extruded VCR, and that ABCC1-mediated drug resistance conferred a different spectrum of multidrug resistance than other T-ALL induction agents. siRNA experiments that blocked ABCC1 export confirmed that VCR resistance could be reversed in vitro. Analyses of T-lymphoblasts obtained from 92 newly diagnosed T-ALL patients treated on Children's Oncology Group Phase III studies 8704/9404 showed that induction failure could be explained in all but one case by the over-expression of ABCB1 or ABCC1. CONCLUSIONS: Taken together, these results suggest that over-expression of ABC transporters plays a contributing role in mediating treatment failure in T-ALL, and underscore the need to employ alternate treatment approaches in patients for whom induction failed or for those with relapsed disease.

7.
Cell Transplant ; 22(10): 1943-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23069078

RESUMO

Organ transplantation is a life-saving procedure and the preferred method of treatment for a growing number of disease states. The advent of new immunosuppressants and improved care has led to great advances in both patient and graft survival. However, acute T-cell-mediated graft rejection occurs in a significant quantity of recipients and remains a life-threatening condition. Acute rejection is associated with decrease in long-term graft survival, demonstrating a need to carefully monitor transplant patients. Current diagnostic criteria for transplant rejection rely on invasive tissue biopsies or relatively nonspecific clinical features. A noninvasive way is needed to detect, localize, and monitor transplant rejection. Capitalizing on advances in targeted contrast agents and magnetic-based detection technology, we developed anti-CD3 antibody-tagged nanoparticles. T cells were found to bind preferentially to antibody-tagged nanoparticles, as identified through light microscopy, transmission electron microscopy, and confocal microscopy. Using mouse skin graft models, we were also able to demonstrate in vivo vascular delivery of T-cell targeted nanoparticles. We conclude that targeting lymphocytes with magnetic nanoparticles is conducive to developing a novel, noninvasive strategy for identifying transplant rejection.


Assuntos
Anticorpos/química , Rejeição de Enxerto/diagnóstico , Nanopartículas de Magnetita/química , Animais , Anticorpos/imunologia , Complexo CD3/imunologia , Rejeição de Enxerto/imunologia , Humanos , Imuno-Histoquímica , Células Jurkat , Magnetometria , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Pele/patologia , Transplante de Pele , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
8.
Contrast Media Mol Imaging ; 7(3): 308-19, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539401

RESUMO

Both magnetic relaxometry and magnetic resonance imaging (MRI) can be used to detect and locate targeted magnetic nanoparticles, noninvasively and without ionizing radiation. Magnetic relaxometry offers advantages in terms of its specificity (only nanoparticles are detected) and the linear dependence of the relaxometry signal on the number of nanoparticles present. In this study, detection of single-core iron oxide nanoparticles by superconducting quantum interference device (SQUID)-detected magnetic relaxometry and standard 4.7 T MRI are compared. The nanoparticles were conjugated to a Her2 monoclonal antibody and targeted to Her2-expressing MCF7/Her2-18 (breast cancer cells); binding of the nanoparticles to the cells was assessed by magnetic relaxometry and iron assay. The same nanoparticle-labeled cells, serially diluted, were used to assess the detection limits and MR relaxivities. The detection limit of magnetic relaxometry was 125 000 nanoparticle-labeled cells at 3 cm from the SQUID sensors. T(2)-weighted MRI yielded a detection limit of 15 600 cells in a 150 µl volume, with r(1) = 1.1 mm(-1) s(-1) and r(2) = 166 mm(-1) s(-1). Her2-targeted nanoparticles were directly injected into xenograft MCF7/Her2-18 tumors in nude mice, and magnetic relaxometry imaging and 4.7 T MRI were performed, enabling direct comparison of the two techniques. Co-registration of relaxometry images and MRI of mice resulted in good agreement. A method for obtaining accurate quantification of microgram quantities of iron in the tumors and liver by relaxometry was also demonstrated. These results demonstrate the potential of SQUID-detected magnetic relaxometry imaging for the specific detection of breast cancer and the monitoring of magnetic nanoparticle-based therapies.


Assuntos
Neoplasias da Mama/diagnóstico , Compostos Férricos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Imagem Molecular , Receptor ErbB-2/imunologia , Refratometria/instrumentação , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos , Teoria Quântica , Receptor ErbB-2/metabolismo , Células Tumorais Cultivadas
9.
Breast Cancer Res ; 13(5): R108, 2011 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-22035507

RESUMO

INTRODUCTION: Breast cancer detection using mammography has improved clinical outcomes for many women, because mammography can detect very small (5 mm) tumors early in the course of the disease. However, mammography fails to detect 10 - 25% of tumors, and the results do not distinguish benign and malignant tumors. Reducing the false positive rate, even by a modest 10%, while improving the sensitivity, will lead to improved screening, and is a desirable and attainable goal. The emerging application of magnetic relaxometry, in particular using superconducting quantum interference device (SQUID) sensors, is fast and potentially more specific than mammography because it is designed to detect tumor-targeted iron oxide magnetic nanoparticles. Furthermore, magnetic relaxometry is theoretically more specific than MRI detection, because only target-bound nanoparticles are detected. Our group is developing antibody-conjugated magnetic nanoparticles targeted to breast cancer cells that can be detected using magnetic relaxometry. METHODS: To accomplish this, we identified a series of breast cancer cell lines expressing varying levels of the plasma membrane-expressed human epidermal growth factor-like receptor 2 (Her2) by flow cytometry. Anti-Her2 antibody was then conjugated to superparamagnetic iron oxide nanoparticles using the carbodiimide method. Labeled nanoparticles were incubated with breast cancer cell lines and visualized by confocal microscopy, Prussian blue histochemistry, and magnetic relaxometry. RESULTS: We demonstrated a time- and antigen concentration-dependent increase in the number of antibody-conjugated nanoparticles bound to cells. Next, anti Her2-conjugated nanoparticles injected into highly Her2-expressing tumor xenograft explants yielded a significantly higher SQUID relaxometry signal relative to unconjugated nanoparticles. Finally, labeled cells introduced into breast phantoms were measured by magnetic relaxometry, and as few as 1 million labeled cells were detected at a distance of 4.5 cm using our early prototype system. CONCLUSIONS: These results suggest that the antibody-conjugated magnetic nanoparticles are promising reagents to apply to in vivo breast tumor cell detection, and that SQUID-detected magnetic relaxometry is a viable, rapid, and highly sensitive method for in vitro nanoparticle development and eventual in vivo tumor detection.


Assuntos
Neoplasias da Mama/diagnóstico , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular/imunologia , Membrana Celular/metabolismo , Feminino , Compostos Férricos , Humanos , Imunoconjugados , Camundongos , Camundongos Nus , Imagens de Fantasmas , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Sensibilidade e Especificidade , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Phys Med Biol ; 55(19): 5985-6003, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20858918

RESUMO

Optimizing the sensitivity of SQUID (superconducting quantum interference device) relaxometry for detecting cell-targeted magnetic nanoparticles for in vivo diagnostics requires nanoparticles with a narrow particle size distribution to ensure that the Néel relaxation times fall within the measurement timescale (50 ms-2 s, in this work). To determine the optimum particle size, single-core magnetite nanoparticles (with nominal average diameters 20, 25, 30 and 35 nm) were characterized by SQUID relaxometry, transmission electron microscopy, SQUID susceptometry, dynamic light scattering and zeta potential analysis. The SQUID relaxometry signal (detected magnetic moment/kg) from both the 25 nm and 30 nm particles was an improvement over previously studied multi-core particles. However, the detected moments were an order of magnitude lower than predicted based on a simple model that takes into account the measured size distributions (but neglects dipolar interactions and polydispersity of the anisotropy energy density), indicating that improved control of several different nanoparticle properties (size, shape and coating thickness) will be required to achieve the highest detection sensitivity. Antibody conjugation and cell incubation experiments show that single-core particles enable a higher detected moment per cell, but also demonstrate the need for improved surface treatments to mitigate aggregation and improve specificity.


Assuntos
Condutividade Elétrica , Magnetismo , Nanopartículas de Magnetita/química , Imagem Molecular/métodos , Anticorpos/química , Anticorpos/metabolismo , Humanos , Células Jurkat , Microscopia Eletrônica de Transmissão , Nanoconjugados/química , Tamanho da Partícula
11.
Cancer Res ; 69(21): 8310-6, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19808954

RESUMO

Acute leukemia is a hematopoietic malignancy for which the accurate measurement of minimal residual disease is critical to determining prognosis and treatment. Although bone marrow aspiration and light microscopy remain the current standard of care for detecting residual disease, these approaches cannot reliably discriminate less than 5% lymphoblast cells. To improve the detection of leukemia cells in the marrow, we developed a novel apparatus that utilizes antibodies conjugated to superparamagnetic iron oxide nanoparticles (SPION) and directed against the acute leukemia antigen CD34, coupled with a "magnetic needle" biopsy. Leukemia cell lines expressing high or minimal CD34 were incubated with anti-CD34-conjugated SPIONs. Three separate approaches including microscopy, superconducting quantum interference device magnetometry, and in vitro magnetic needle extraction were then used to assess cell sampling. We found that CD34-conjugated nanoparticles preferentially bind high CD34-expressing cell lines. Furthermore, the magnetic needle enabled identification of both cell line and patient leukemia cells diluted into normal blood at concentrations below those normally found in remission marrow samples. Finally, the magnetic needle enhanced the percentage of lymphoblasts detectable by light microscopy by 10-fold in samples of fresh bone marrow aspirate approximating minimal residual disease. These data suggest that bone marrow biopsy using antigen-targeted magnetic nanoparticles and a magnetic needle for the evaluation of minimal residual disease in CD34-positive acute leukemias can significantly enhance sensitivity compared with the current standard of care.


Assuntos
Antígenos CD34/análise , Células da Medula Óssea/patologia , Leucemia/diagnóstico , Magnetismo , Nanopartículas Metálicas , Neoplasia Residual/diagnóstico , Compostos Férricos/química , Humanos , Sensibilidade e Especificidade , Células Tumorais Cultivadas
12.
J Magn Magn Mater ; 321(10): 1459-1464, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20161153

RESUMO

Magnetite nanoparticles (Chemicell SiMAG-TCL) were characterized by SQUID-relaxometry, susceptometry, and TEM. The magnetization detected by SQUID-relaxometry was 0.33% of that detected by susceptometry, indicating that the sensitivity of SQUID-relaxometry could be significantly increased through improved control of nanoparticle size. The relaxometry data were analyzed by the moment superposition model (MSM) to determine the distribution of nanoparticle moments. Analysis of the binding of CD34-conjugated nanoparticles to U937 leukemia cells revealed 60,000 nanoparticles per cell, which were collected from whole blood using a prototype magnetic biopsy needle, with a capture efficiency of >65% from a 750 µl sample volume in 1 minute.

13.
J Biomol Screen ; 13(3): 185-93, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310528

RESUMO

The overexpression of P-glycoprotein, encoded by the ATP Binding Cassette B1 (ABCB1) gene, contributes to multidrug resistance (MDR) and is considered one of the major obstacles to successful cancer chemotherapy. The authors previously developed a T-lineage acute lymphoblastic leukemia (T-ALL) cell line that overexpresses ABCB1 and exhibits MDR to daunorubicin (DNR), prednisolone, and vincristine. Using this cell line and the fluorescent probe JC-1, they developed a flow cytometry-based, high-throughput screening (HTS) assay that quantifies ABCB1 efflux. They screened a library of 880 off-patent drugs for their ability to inhibit ABCB1 efflux and then measured the ability of 11 lead compounds to reverse in vitro DNR-mediated drug resistance and the toxic doses for each agent. Seven of the 11 drugs were able to reverse drug resistance at a concentration significantly below its toxic dose. Of the remaining 7, only 1 compound, mometasone furoate, has not been previously described as an ABCB1 antagonist to DNR-mediated drug resistance. On the basis of its high ABC modulator activity and relatively large in vitro therapeutic window, this drug warrants further investigation. In addition, the approach used in this study is useful for identifying off-patent drugs that may be repurposed for novel clinical indications.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Pregnadienodiois/análise , Pregnadienodiois/farmacologia , Bioensaio , Carbocianinas/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Células Jurkat , Furoato de Mometasona , Pregnadienodiois/química , Regulação para Cima/efeitos dos fármacos
14.
Assay Drug Dev Technol ; 6(2): 263-76, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18205550

RESUMO

Up-regulation of pump (transporter) expression and selection of resistant cancer cells result in cancer multidrug resistance to diverse substrates of these transporters. While more than 48 members of the ATP binding cassette (ABC) transporter superfamily have been identified, up to now only three human ABC transporters-ABCB1, ABCC1, and ABCG2-have unambiguously been shown to contribute to cancer multidrug resistance. The use of low-toxicity and high-specificity agents as a targeted transporter inhibition strategy is necessary to effectively overcome multiple drug resistance. An objective of the present studies was to develop and validate HyperCyt (IntelliCyt, Albuquerque, NM) flow cytometry high-throughput screeening assays to assess the specificity of test compounds that inhibited transporters as an integral part of the screen. Two separate duplex assays were constructed: one in which ABCB1 and ABCG2 transporters were evaluated in parallel using fluorescent J-aggregate-forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide as substrate, and the other in which ABCB1 and ABCC1 transporters were evaluated in parallel using fluorescent calcein acetoxymethyl ester as substrate. ABCB1-expressing cells were color-coded to allow their distinction from cells expressing the alternate transporter. The assays were validated in a screen of the Prestwick Chemical Library (Illkirch, France). Three novel selective inhibitors of the ABCC1 transporter were identified in the screen, and the activity of each was confirmed in follow-up chemosensitivity shift and reversal studies. This high-throughput screening assay provides an efficient approach for identifying selective inhibitors of individual ABC transporters, promising as probes of transporter function and therapeutic tools for treating chemotherapy-resistant cancers.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Citometria de Fluxo/métodos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Benzimidazóis , Carbocianinas , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Eletrofisiologia , Corantes Fluorescentes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
15.
Br J Haematol ; 139(1): 20-30, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17854304

RESUMO

Acquired drug resistance eventually leads to treatment failure in T-cell acute lymphoblastic leukaemia (T-ALL). Immunophenotypic and cytogenetic heterogeneities within T-ALL influence susceptibility to cytotoxic therapy, and little is known about the mechanisms of drug resistance at specific stages of T-cell ontogeny. We developed tolerance to therapeutic concentrations of daunorubicin (DNR) and L-asparaginase (L-asp) in Jurkat (CD1a(-), sCD3(+)) and Sup T1 (CD1a(+), sCD3(-)) cell lines, having respective 'mature' and 'cortical' stages of developmental arrest. DNR resistant cells acquired multidrug resistance: 310-fold increased resistance to vincristine (VCR) and a 120-fold increased resistance to prednisolone (PRED). Microarray analysis identified upregulation of asparagine synthetase (ASNS) and argininosuccinate synthase 1 (ASS1) to cell lines with acquired resistance to L-asp, and in the case of DNR, upregulation of ATP-binding cassette B1 (ABCB1). Suppression of ABCB1, ASNS and ASS1 by RNA interference revealed their functional relevance to acquired drug resistance. Expression profiling of these genes in 80 T-ALL patients showed correlation with treatment response. This study expands the pool of available drug resistant cell lines having cortical and mature stages of developmental arrest, introduces three new drug resistant T-ALL cell lines, and identifies gene interactions leading to L-asp and DNR resistance.


Assuntos
Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Leucêmica da Expressão Gênica , Genes MDR , Leucemia-Linfoma de Células T do Adulto/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Argininossuccinato Sintase/genética , Asparaginase/uso terapêutico , Aspartato-Amônia Ligase/genética , Criança , Daunorrubicina/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Células Jurkat , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Prednisolona/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vincristina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...