Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37374438

RESUMO

The fabrication of high-efficiency GaAsP-based solar cells on GaAs wafers requires addressing structural issues arising from the materials lattice mismatch. We report on tensile strain relaxation and composition control of MOVPE-grown As-rich GaAs1-xPx/(100)GaAs heterostructures studied by double-crystal X-ray diffraction and field emission scanning electron microscopy. Thin (80-150 nm) GaAs1-xPx epilayers appear partially relaxed (within 1-12% of the initial misfit) through a network of misfit dislocations along the sample [011] and [011-] in plane directions. Values of the residual lattice strain as a function of epilayer thickness were compared with predictions from the equilibrium (Matthews-Blakeslee) and energy balance models. It is shown that the epilayers relax at a slower rate than expected based on the equilibrium model, an effect ascribed to the existence of an energy barrier to the nucleation of new dislocations. The study of GaAs1-xPx composition as a function of the V-group precursors ratio in the vapor during growth allowed for the determination of the As/P anion segregation coefficient. The latter agrees with values reported in the literature for P-rich alloys grown using the same precursor combination. P-incorporation into nearly pseudomorphic heterostructures turns out to be kinetically activated, with an activation energy EA = 1.41 ± 0.04 eV over the entire alloy compositional range.

2.
Nano Lett ; 18(8): 4777-4784, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30004712

RESUMO

The nondestructive characterization of nanoscale devices, such as those based on semiconductor nanowires, in terms of functional potentials is crucial for correlating device properties with their morphological/materials features, as well as for precisely tuning and optimizing their growth process. Electron holographic tomography (EHT) has been used in the past to reconstruct the total potential distribution in three-dimension but hitherto lacked a quantitative approach to separate potential variations due to chemical composition changes (mean inner potential, MIP) and space charges. In this Letter, we combine and correlate EHT and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography on an individual ⟨111⟩ oriented GaAs-AlGaAs core-multishell nanowire (NW). We obtain excellent agreement between both methods in terms of the determined Al concentration within the AlGaAs shell, as well as thickness variations of the few nanometer thin GaAs shell acting as quantum well tube. Subtracting the MIP determined from the STEM tomogram, enables us to observe functional potentials at the NW surfaces and at the Au-NW interface, both ascribed to surface/interface pinning of the semiconductor Fermi level.

3.
Nano Lett ; 17(7): 4075-4082, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613888

RESUMO

We report on the first Au-catalyzed growth of CdTe nanowires by metalorganic vapor phase epitaxy. The nanowires were obtained by a separate precursors flow process in which (i) di-isopropyl-telluride (iPr2Te) was first flowed through the reactor to ensure the formation of liquid Au-Te alloy droplets, and (ii) after purging with pure H2 to remove unreacted iPr2Te molecules from the vapor and the growth surface, (iii) dimethylcadmium (Me2Cd) was supplied to the vapor so that Cd atoms could enter the catalyst droplets, leading to nanowire self-assembly. CdTe nanowires were grown between 485 and 515 °C on (111)B-GaAs substrates, the latter preliminary deposited with a 2 µm thick (111)-oriented CdTe buffer layer onto which Au nanoparticles were provided. As-grown CdTe nanowires were vertical ([111]-aligned) straight segments of constant diameter and showed an Au-rich nanodroplet at their tips, the contact angle between the droplets and the nanowires being ∼130°. The nanowire axial growth rate appeared kinetics-limited with an activation energy ∼57 kcal/mol. However, the growth rate turned independent from the nanowire diameter. Present data are interpreted by a theoretical model explaining the nanowire growth through the diffusion transport of Te adatoms under the assumption that their growth occurs during the Me2Cd-flow process step. Low-temperature cathodoluminescence spectra recorded from single nanowires showed a well-resolved band-edge emission typical of zincblend CdTe along with a dominant band peaked at 1.539 eV.

4.
Nano Lett ; 15(1): 75-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25545191

RESUMO

We demonstrate spatial probing of carrier transport within GaAs/AlGaAs core-shell nanowires with nanometer lateral resolution and subsurface sensitivity by energy-variable electron beam induced current imaging. Carrier drift that evolves with applied electric field is distinguished from a coupled drift-diffusion length. Along with simulation of injected electron trajectories, combining beam energy tuning with precise positioning for selective probing of core and shell reveals axial position- and bias-dependent differences in carrier type and transport along parallel conduction channels. These results indicate how analysis of transport within heterostructured nanomaterials is no longer limited to nonlocal or surface measurements.


Assuntos
Alumínio/química , Gálio/química , Nanofios/química , Elétrons
5.
Nano Lett ; 13(9): 4152-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23937245

RESUMO

Group III-V coaxial core-shell semiconducting nanowire heterostructures possess unique advantages over their planar counterparts in logic, photovoltaic, and light-emitting devices. Dimensional confinement of electronic carriers and interface complexity in nanowires are known to produce local electronic potential landscapes along the radial direction that deviate from those along the normal to planar heterojunction interfaces. However, understanding of selected electronic and optoelectronic carrier transport properties and device characteristics remains lacking without a direct measurement of band alignment in individual nanowires. Here, we report on, in the GaAs/AlxGa1-xAs and GaAs/AlAs core-shell nanowire systems, how photocurrent and photoluminescence spectroscopies can be used together to construct a band diagram of an individual heterostructure nanowire with high spectral resolution, enabling quantification of conduction band offsets.


Assuntos
Alumínio/química , Arsenicais/química , Gálio/química , Nanofios/química , Óptica e Fotônica , Semicondutores , Análise Espectral
6.
Nanotechnology ; 23(46): 465701, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23093063

RESUMO

Conductivity and photoconductivity properties of individual GaAs/AlGaAs core-shell nanowires (NWs) are reported. The NWs were grown by Au-assisted metalorganic vapor phase epitaxy, and then dispersed on a substrate where electrical contacts were defined on the individual NWs by electron beam induced deposition. Under dark conditions, the carrier transport along the NW is found to be limited by Schottky contacts, and influenced by the presence of an oxide layer. Nonetheless, under illumination, the GaAs/AlGaAs core-shell NW shows a significant photocurrent, much higher than the bare GaAs NW. The spatial dependence of the photocurrent within the single core-shell NW, evaluated by a mapping technique, confirms the blocking behavior of the contacts. Moreover, local spectral measurements were performed which allow one to discriminate the contribution of carriers photogenerated in the core and in the shell.

7.
Phys Rev Lett ; 107(15): 156802, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107312

RESUMO

We report the hot photoexcited electron transfer across the coaxial interface of a cylindrical core-shell nanowire. Modulation of the transfer rates, manifested as a large tunability of the voltage onset of negative differential resistance and of voltage-current phase, is achieved using three different modes. The coupling of electrostatic gating, incident photon energy, and the incident photon intensity to transfer rates is facilitated by the combined influences of geometric confinement and heterojunction shape on hot-electron transfer, and by electron-electron scattering rates that can be altered by varying the incident photon flux, with evidence of weak electron-phonon scattering. Dynamic manipulation of this transfer rate permits the introduction and control of a continuously adjustable phase delay of up to ∼130° within a single nanometer-scale device element.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA