Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Immunol ; : e2350548, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634287

RESUMO

Transforming growth factor beta (TGF-ß) signaling is essential for a balanced immune response by mediating the development and function of regulatory T cells (Tregs) and suppressing autoreactive T cells. Disruption of this balance can result in autoimmune diseases, including multiple sclerosis (MS). MicroRNAs (miRNAs) targeting TGF-ß signaling have been shown to be upregulated in naïve CD4 T cells in MS patients, resulting in a limited in vitro generation of human Tregs. Utilizing the murine model experimental autoimmune encephalomyelitis, we show that perinatal administration of miRNAs, which target the TGF-ß signaling pathway, enhanced susceptibility to central nervous system (CNS) autoimmunity. Neonatal mice administered with these miRNAs further exhibited reduced Treg frequencies with a loss in T cell receptor repertoire diversity following the induction of experimental autoimmune encephalomyelitis in adulthood. Exacerbated CNS autoimmunity as a result of miRNA overexpression in CD4 T cells was accompanied by enhanced Th1 and Th17 cell frequencies. These findings demonstrate that increased levels of TGF-ß-associated miRNAs impede the development of a diverse Treg population, leading to enhanced effector cell activity, and contributing to an increased susceptibility to CNS autoimmunity. Thus, TGF-ß-targeting miRNAs could be a risk factor for MS, and recovering optimal TGF-ß signaling may restore immune homeostasis in MS patients.

2.
J Neuroimmunol ; 387: 578282, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38183947

RESUMO

Multiple sclerosis (MS) is a demyelinating disease characterized by infiltration of autoreactive T cells into the central nervous system (CNS). In order to understand how activated, autoreactive T cells are able to cross the blood brain barrier, the unique molecular characteristics of pathogenic T cells need to be more thoroughly examined. In previous work, our laboratory found autotaxin (ATX) to be upregulated by activated autoreactive T cells in the mouse model of MS. ATX is a secreted glycoprotein that promotes T cell chemokinesis and transmigration through catalysis of lysophoshphatidic acid (LPA). ATX is elevated in the serum of MS patients during active disease phases, and we previously found that inhibiting ATX decreases severity of neurological deficits in the mouse model. In this study, ATX expression was found to be lower in MS patient immune cells during rest, but significantly increased during early activation in a manner not seen in healthy controls. The ribosomal binding protein HuR, which stabilizes ATX mRNA, was also increased in MS patients in a similar pattern to that of ATX, suggesting it may be helping regulate ATX levels after activation. The proinflammatory cytokine interleukin-23 (IL-23) was shown to induce prolonged ATX expression in MS patient Th1 and Th17 cells. Finally, through ChIP, re-ChIP analysis, we show that IL-23 may be signaling through pSTAT3/pSTAT4 heterodimers to induce expression of ATX. Taken together, these findings elucidate cell types that may be contributing to elevated serum ATX levels in MS patients and identify potential drivers of sustained expression in encephalitogenic T cells.


Assuntos
Esclerose Múltipla , Animais , Camundongos , Humanos , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Citocinas , Interleucina-23 , Lisofosfolipídeos/genética , Lisofosfolipídeos/farmacologia
3.
Eur J Immunol ; 54(1): e2350561, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850588

RESUMO

Multiple sclerosis (MS) is an immune-mediated inflammatory disease of the CNS. A defining characteristic of MS is the ability of autoreactive T lymphocytes to cross the blood-brain barrier and mediate inflammation within the CNS. Previous work from our lab found the gene Enpp2 to be highly upregulated in murine encephalitogenic T cells. Enpp2 encodes for the protein autotaxin, a secreted glycoprotein that catalyzes the production of lysophosphatidic acid and promotes transendothelial migration of T cells from the bloodstream into the lymphatic system. The present study sought to characterize autotaxin expression in T cells during CNS autoimmune disease and determine its potential therapeutic value. Myelin-activated CD4 T cells upregulated expression of autotaxin in vitro, and ex vivo analysis of CNS-infiltrating CD4 T cells showed significantly higher autotaxin expression compared with cells from healthy mice. In addition, inhibiting autotaxin in myelin-specific T cells reduced their encephalitogenicity in adoptive transfer studies and decreased in vitro cell motility. Importantly, using two mouse models of MS, treatment with an autotaxin inhibitor ameliorated EAE severity, decreased the number of CNS infiltrating T and B cells, and suppressed relapses, suggesting autotaxin may be a promising therapeutic target in the treatment of MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Camundongos , Barreira Hematoencefálica , Linfócitos T CD4-Positivos , Sistema Nervoso Central , Camundongos Endogâmicos C57BL , Esclerose Múltipla/terapia , Esclerose Múltipla/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36270950

RESUMO

A woman presented at age 18 years with partial myelitis and diplopia and experienced multiple subsequent relapses. Her MRI demonstrated T2 abnormalities characteristic of multiple sclerosis (MS) (white matter ovoid lesions and Dawson fingers), and CSF demonstrated an elevated IgG index and oligoclonal bands restricted to the CSF. Diagnosed with clinically definite relapsing-remitting MS, she was treated with various MS disease-modifying therapies and eventually began experiencing secondary progression. At age 57 years, she developed an acute longitudinally extensive transverse myelitis and was found to have AQP4 antibodies by cell-based assay. Our analysis of the clinical course, radiographic findings, molecular diagnostic methods, and treatment response characteristics support the hypothesis that our patient most likely had 2 CNS inflammatory disorders: MS, which manifested as a teenager, and neuromyelitis optica spectrum disorder, which evolved in her sixth decade of life. This case emphasizes a key principle in neurology practice, which is to reconsider whether the original working diagnosis remains tenable, especially when confronted with evidence (clinical and/or paraclinical) that raises the possibility of a distinctively different disorder.


Assuntos
Esclerose Múltipla , Mielite Transversa , Neuromielite Óptica , Humanos , Adolescente , Feminino , Pessoa de Meia-Idade , Aquaporina 4 , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/complicações , Bandas Oligoclonais , Mielite Transversa/diagnóstico , Mielite Transversa/complicações , Imunoglobulina G
5.
Front Neurol ; 13: 796933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651353

RESUMO

Vitamin D insufficiency during childhood has been linked to the development of multiple sclerosis (MS), typically an adult-onset inflammatory demyelinating disease of the central nervous system (CNS). Since vitamin D was known to have immunoregulatory properties on both innate and adaptive immunity, it was hypothesized that low vitamin D resulted in aberrant immune responses and the development of MS. However, vitamin D receptors are present on many cell types, including neurons, oligodendrocytes, astrocytes and microglia, and vitamin D has profound effects on development and function of the CNS. This leads to the possibility that low vitamin D may alter the CNS in a manner that makes it vulnerable to inflammation and the development of MS. This review analysis the role of vitamin D in the immune and nervous system, and how vitamin D insufficiency in children may contribute to the development of MS.

6.
J Neuroimmunol ; 359: 577676, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364105

RESUMO

B cell depletion therapy has been shown to be beneficial in multiple sclerosis (MS). However, the mechanism by which B cell depletion mediates its beneficial effects in MS is still unclear. To better understand how B cell depletion may benefit patients with a disease previously thought to be primarily mediated by CD4 T cells, immune profiles were monitored in 48 patients in a phase II trial of ublituximab, a glycoengineered CD20 monoclonal antibody, at 18 time points over a year. As we previously described there was a significant shift in the percentages of T cells, NK cells, and myeloid cells following the initial dose of ublituximab, but this shift normalized within a week and these populations remained stable for the duration of the study. However, T cell subsets changed with an increase in the percentage of naïve CD4 and CD8 T cells and a decline in memory T cells. Importantly, the percentage of Th1 and CD4+GM-CSF+ T cells decreased, while the percentage of Tregs continued to increase over the year. Ublituximab not only depleted CD20+ B cells, but also CD20+ T cells. The favorable changes in the T cell subsets may contribute to the beneficial effects of B cell depletion therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos B/metabolismo , Células Matadoras Naturais/metabolismo , Depleção Linfocítica/métodos , Esclerose Múltipla Recidivante-Remitente/sangue , Linfócitos T/metabolismo , Anticorpos Monoclonais/farmacologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Relatório de Pesquisa , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
7.
J Neuroimmunol ; 359: 577675, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403862

RESUMO

Myelin-specific CD4 T effector cells (Teffs), Th1 and Th17 cells, are encephalitogenic in experimental autoimmune encephalomyelitis (EAE), a well-defined murine model of multiple sclerosis (MS) and implicated in MS pathogenesis. Forkhead box O 1 (FoxO1) is a conserved effector molecule in PI3K/Akt signaling and critical in the differentiation of CD4 T cells into T helper subsets. However, it is unclear whether FoxO1 may be a target for redirecting CD4 T cell differentiation and benefit CNS autoimmunity. Using a selective FoxO1 inhibitor AS1842856, we show that inhibition of FoxO1 suppressed the differentiation and expansion of Th1 cells. The transdifferentiation of Th17 cells into encephalitogenic Th1-like cells was suppressed by FoxO1 inhibition upon reactivation of myelin-specific CD4 T cells from EAE mice. The transcriptional balance skewed from the Th1 transcription factor T-bet toward the Treg transcription factor Foxp3. Myelin-specific CD4 T cells treated with the FoxO1 inhibitor were less encephalitogenic in adoptive transfer EAE studies. Inhibition of FoxO1 in T cells from MS patients significantly suppressed the expansion of Th1 cells. Furthermore, FoxO1 inhibition with AS1842856 promoted the development of functional iTreg cells. The immune checkpoint programmed cell death protein-1 (PD-1)-induced Foxp3 expression in CD4 T cells was impaired by FoxO1 inhibition. These data illustrate an important role of FoxO1 signaling in CNS autoimmunity via regulating autoreactive Teff and Treg balance.


Assuntos
Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteína Forkhead Box O1/imunologia , Esclerose Múltipla/imunologia , Adulto , Animais , Autoimunidade/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Proteína Forkhead Box O1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Quinolonas/farmacologia
8.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33411696

RESUMO

Reestablishing an appropriate balance between T effector cells (Teff) and Tregs is essential for correcting autoimmunity. Multiple sclerosis (MS) is an immune-mediated chronic CNS disease characterized by neuroinflammation, demyelination, and neuronal degeneration, in which the Teff:Treg balance is skewed toward pathogenic Teffs Th1 and Th17 cells. STAT3 is a key regulator of Teff:Treg balance. Using the structure-based design, we have developed a potentially novel small-molecule prodrug LLL12b that specifically inhibits STAT3 and suppresses Th17 differentiation and expansion. Moreover, LLL12b regulates the fate decision between Th17 and Tregs in an inflammatory environment, shifting Th17:Treg balance toward Tregs and favoring the resolution of inflammation. Therapeutic administration of LLL12b after disease onset significantly suppresses disease progression in adoptively transferred, chronic, and relapsing-remitting experimental autoimmune encephalomyelitis. Disease relapses were also significantly suppressed by LLL12b given during the remission phase. Additionally, LLL12b shifts Th17:Treg balance of CD4+ T cells from MS patients toward Tregs and increases Teff sensitivity to Treg-mediated suppression. These data suggest that selective inhibition of STAT3 by the small molecule LLL12b recalibrates the effector and regulatory arms of CD4+ T responses, representing a potentially clinically translatable therapeutic strategy for MS.


Assuntos
Autoimunidade , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Fator de Transcrição STAT3/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Animais , Antraquinonas/farmacologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Células Th17/imunologia
9.
Mult Scler ; 27(3): 420-429, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32351164

RESUMO

BACKGROUND: Ublituximab, a novel monoclonal antibody (mAb) targeting a unique epitope on the CD20 antigen, is glycoengineered for enhanced B-cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Greater ADCC may allow lower doses and shorter infusion times versus other anti-CD20 mAbs. OBJECTIVE: The objective was to determine optimal dose, infusion time, and activity of ublituximab in relapsing multiple sclerosis. METHODS: This is a phase 2, placebo-controlled study. Patients received three ublituximab infusions (150 mg over 1-4 hours on day 1 and 450-600 mg over 1-3 hours on day 15 and week 24) in six dosing cohorts. The primary endpoint was B-cell depletion. RESULTS: In all cohorts (N = 48), median B-cell depletion was >99% by week 4, maintained at weeks 24 and 48. Most common adverse events (AEs) were infusion-related reactions (all grade 1-2), with no apparent increased incidence at shorter infusion times. There were no AE-related discontinuations. At weeks 24 and 48, no T1 gadolinium-enhancing lesions (p = 0.003) and a 10.6% decrease in T2 lesion volume (p = 0.002) were detected. The annualized relapse rate was 0.07; 93% remained relapse free on study. Overall, 74% of patients had no evidence of disease activity (NEDA). CONCLUSION: Ublituximab was safely infused as rapid as 1 hour, producing robust B-cell depletion and profound reductions in magnetic resonance imaging (MRI) activity and relapses.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Anticorpos Monoclonais , Antígenos CD20 , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Recidiva
10.
Front Neurol ; 11: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082243

RESUMO

Low vitamin D during childhood is associated with an increased risk of developing multiple sclerosis (MS) as an adult. Given that vitamin D has anti-inflammatory properties, it has been postulated that the relationship between MS and low vitamin D is due to immune dysregulation. Since the vitamin D receptor (VDR) is expressed in many cell types, this study investigated an alternative hypothesis-neuron-specific VDR signaling induces anti-inflammatory molecules that protect the central nervous system from autoimmunity. Using media from neurons treated with calcitriol, the active form of vitamin D3, LPS-activated microglia had a reduction in pro-inflammatory molecules, and a reciprocal induction of anti-inflammatory molecules. Since IL-34 is critical to the homeostasis of microglia, and was previously shown to be induced in endothelial cells by vitamin D, we investigated IL-34 as the potential anti-inflammatory molecule induced in neurons by vitamin D. Treatment of LPS-activated microglia with IL-34 reduced pro-inflammatory cytokine production and enhanced the expression of anti-inflammatory transcripts. However, neutralizing IL-34 in vitamin D neuronal conditioned media only impacted IL-6 and not the broader anti-inflammatory phenotype of microglia. To mimic low vitamin D in children, we used a neuron-specific inducible mouse model in which VDR was partially deleted in juvenile mice. Partial deletion of VDR in neurons during early life resulted in exacerbated CNS autoimmunity in adult mice. Overall, the study illustrated that vitamin D signaling in neurons promotes an anti-inflammatory state in microglia, and low vitamin D in early life may enhance CNS autoimmunity.

11.
J Neuroimmunol ; 332: 187-197, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31077854

RESUMO

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system, thought to be mediated by myelin-specific CD4+ T cells. However, B cell depletion has proven to be an effective therapy for MS, but the mechanism is not well understood. This study was designed to determine how B cell depletion changes lymphocyte profiles. During a phase IIa clinical trial with ublituximab, a novel CD20 antibody, blood was collected from 48 MS patients at 11 time points over 24 weeks and the lymphocyte profiles were analyzed by flow cytometry. The percentage of naïve CD4+ and CD8+ T cells increased, while the percentage of both effector and central memory T cells declined. CD4+ Th1 effector cells decreased, while there was a significant increase in CD4+ regulatory T cells. The depletion of B cells had a favorable shift in the lymphocyte landscape, reducing the number of naïve T cells becoming activated and transitioning to memory T cells. The ratio of Th1 cells to CD4+ regulatory T cells declined, suggesting that immune regulation was being restored. These data suggest that loss of B cells as antigen presenting cells is a major mechanism of action for the beneficial effects of CD20 antibody therapy in MS.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Depleção Linfocítica , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Subpopulações de Linfócitos T/imunologia , Adolescente , Adulto , Anticorpos Monoclonais/farmacologia , Antígenos CD20/imunologia , Feminino , Humanos , Memória Imunológica , Células Matadoras Naturais/imunologia , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/imunologia , Células Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Adulto Jovem
12.
J Neuroimmunol ; 325: 20-28, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30366205

RESUMO

B lymphocyte-induced maturation protein (Blimp-1) is a transcription factor that regulates effector/memory B cells and CD8 T cells. Here we show that Blimp-1 is expressed in both Th1 and Th17 cells in vitro and highly expressed in effector/memory myelin-specific CD4 T cells in experimental autoimmune encephalomyelitis (EAE) mice. The immunized Blimp-1 conditional knockout mice have a significantly delayed disease onset but enhanced disease severity during the effector phase compared to their wild-type littermates, suggesting that Blimp-1 is a unique transcription factor with distinct roles in the regulation of myelin-specific CD4 T cells during priming and effector phase of EAE.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo
13.
Front Immunol ; 9: 1255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915594

RESUMO

Identifying molecules that are differentially expressed in encephalitogenic T cells is critical to the development of novel and specific therapies for multiple sclerosis (MS). In this study, IL-3 was identified as a molecule highly expressed in encephalitogenic Th1 and Th17 cells, but not in myelin-specific non-encephalitogenic Th1 and Th17 cells. However, B10.PL IL-3-deficient mice remained susceptible to experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Furthermore, B10.PL myelin-specific T cell receptor transgenic IL-3-/- Th1 and Th17 cells were capable of transferring EAE to wild-type mice. Antibody neutralization of IL-3 produced by encephalitogenic Th1 and Th17 cells failed to alter their ability to transfer EAE. Thus, IL-3 is highly expressed in myelin-specific T cells capable of inducing EAE compared to activated, non-encephalitogenic myelin-specific T cells. However, loss of IL-3 in encephalitogenic T cells does not reduce their pathogenicity, indicating that IL-3 is a marker of encephalitogenic T cells, but not a critical element in their pathogenic capacity.


Assuntos
Autoimunidade , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Interleucina-3/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Alelos , Animais , Autoimunidade/genética , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Genótipo , Interleucina-3/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
Front Mol Neurosci ; 10: 344, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123469

RESUMO

The development of neuroprotective and repair strategies for treating progressive multiple sclerosis (MS) requires new insights into axonal injury. 4-aminopyridine (4-AP), a blocker of voltage-gated K+ (Kv) channels, is used in symptomatic treatment of progressive MS, but the underlying mechanism remains unclear. Here we report that deleting Kv3.1-the channel with the highest 4-AP sensitivity-reduces clinical signs in experimental autoimmune encephalomyelitis (EAE), a mouse model for MS. In Kv3.1 knockout (KO) mice, EAE lesions in sensory and motor tracts of spinal cord were markedly reduced, and radial astroglia were activated with increased expression of brain derived neurotrophic factor (BDNF). Kv3.3/Kv3.1 and activated BDNF receptors were upregulated in demyelinating axons in EAE and MS lesions. In spinal cord myelin coculture, BDNF treatment promoted myelination, and neuronal firing via altering channel expression. Therefore, suppressing Kv3.1 alters neural circuit activity, which may enhance BNDF signaling and hence protect axons from inflammatory insults.

15.
JCI Insight ; 2(17)2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28878115

RESUMO

The factors that promote the differentiation of pathogenic T cells in autoimmune diseases are poorly defined. Use of genetically modified mice has provided insight into molecules necessary for the development of autoimmunity, but the sum of the data has led to contradictory observations based on what is currently known about specific molecules in specific signaling pathways. To define the minimum signals required for development of encephalitogenic T cells that cause CNS autoimmunity, myelin-specific T cells were differentiated with various cytokine cocktails, and pathogenicity was determined by transfer into mice. IL-6+IL-23 or IL-12+IL-23 generated encephalitogenic T cells and recapitulated the essential cytokine signals provided by antigen-presenting cells, and both IL-6 and IL-12 induced IL-23 receptor expression on both mouse and human naive T cells. IL-23 signaled through both STAT3 and STAT4, and disruption in STAT4 signaling impaired CNS autoimmunity independent of IL-12. These data explain why IL-12-deficient mice develop CNS autoimmunity, while STAT4-deficient mice are resistant. CD4+ memory T cells from multiple sclerosis patients had significantly higher levels of p-STAT3/p-STAT4, and p-STAT3/p-STAT4 heterodimers were observed upon IL-23 signaling, suggesting that p-STAT3/p-STAT4 induced by IL-23 signaling orchestrate the generation of pathogenic T cells in CNS autoimmunity, regardless of Th1 or Th17 phenotype.


Assuntos
Autoimunidade , Sistema Nervoso Central/imunologia , Esclerose Múltipla/imunologia , Receptores de Interleucina/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Adolescente , Adulto , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Memória Imunológica , Interleucina-12/administração & dosagem , Interleucina-23/administração & dosagem , Interleucina-6/administração & dosagem , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais , Adulto Jovem
16.
Eur J Immunol ; 47(3): 446-453, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102541

RESUMO

Transforming growth factor beta (TGF-ß) is a pleiotropic cytokine that has been shown to influence the differentiation and function of T cells. The role that TGF-ß plays in immune-mediated disease, such as multiple sclerosis (MS), has become a major area of investigation since CD4+ T cells appear to be a major mediator of autoimmunity. This review provides an analysis of the literature on the role that TGF-ß plays in the generation and regulation of encephalitogenic and regulatory T cells (Treg) in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, as well as in T cells of MS patients. Since TGF-ß plays a major role in the development and function of both CD4+ effector and Treg, which are defective in MS patients, recent studies have found potential mechanisms to explain the basis for these T-cell defects to establish a foundation for potentially modulating TGF-ß signaling to restore normal T-cell function in MS patients.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Autoantígenos/imunologia , Autoimunidade , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/imunologia
17.
J Neuroimmunol ; 304: 40-42, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27544641

RESUMO

This article is a summary of a lecture presented at the 40years of Neuroimmunology meeting held on April 19, 2015, in commemoration of the 40th anniversary of the Neuroimmunology Branch (NIB) at the National Institutes of Health. Experimental autoimmune encephalomyelitis (EAE) has been used as a model for multiple sclerosis (MS) for several decades. There are remarkable similarities between the central nervous system pathology of mice with EAE and MS patients. However, there are distinct differences which limits the contribution of EAE to the understanding of MS. My lecture summarized the role that the NIB played in establishing EAE as a valid model for studying MS, and the role that EAE has played in my own research.


Assuntos
Congressos como Assunto/tendências , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , National Institutes of Health (U.S.)/tendências , Animais , Cobaias , Humanos , Camundongos , Ratos , Resultado do Tratamento , Estados Unidos
18.
J Neuroinflammation ; 13(1): 302, 2016 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-27912762

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic CNS autoimmune disease characterized by inflammation, demyelination, and neuronal degeneration, where myelin-specific CD4 T cells play critical roles in the formation of acute MS lesions and disease progression. The suppression of IL-7Rα expression and the upregulation of inhibitory receptors (PD-1, etc.) are essential parts of the cell-intrinsic immunosuppressive program regulating T effector functions to prevent autoimmunity. However, little is known on the factors regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T effector/memory cells during the development of CNS autoimmunity. METHODS: We analyzed the roles of the transcription factor T-bet in regulating the expression of IL-7Rα and inhibitory receptors in myelin-specific CD4 T cells. Furthermore, we compared the effects of different inflammatory cytokines that are crucial for Th1 and Th17 development in regulating the IL-7Rα/PD-1 balance. RESULTS: We discovered that T-bet suppresses the expression of inhibitory receptors (PD-1 and LAG-3) and promotes IL-7Rα expression in myelin-specific CD4 T cells in vitro and in vivo. As a result, T-bet skews IL-7Rα/PD-1 balance towards IL-7Rα and promotes enhanced effector function. Furthermore, IL-12 enhances IL-7Rα expression in a T-bet independent manner in myelin-specific Th1 cells. Meanwhile, IL-6, the cytokine inducing highly encephalitogenic Th17 differentiation, suppresses PD-1 while upregulating IL-7Rα, skewing IL-7Rα/PD-1 balance towards IL-7Rα, and promoting enhanced effector function. Moreover, blocking IL-7 signaling in myelin-specific CD4 T cells by αIL-7Rα significantly delays experimental autoimmune encephalomyelitis (EAE) onset and reduces disease severity. CONCLUSIONS: T-bet is a major transcription factor regulating IL-7Rα/PD-1 balance in myelin-specific CD4 T cells during EAE development, and there is a positive correlation between several major determinants promoting T cell encephalitogenicity (T-bet, IL-6, IL-12) and an IL-7Rα/PD-1 balance skewed towards IL-7Rα. Furthermore, IL-7 signaling inhibits PD-1 expression in myelin-specific CD4 T cells and blocking IL-7 signaling suppresses T cell encephalitogenicity. Therefore, interference with inhibitory pathways and IL-7Rα expression may suppress the encephalitogenic potential of myelin-specific CD4 T cells and have therapeutic benefits for MS patients.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/cirurgia , Regulação da Expressão Gênica/imunologia , Receptores de Interleucina-17/metabolismo , Animais , Sistema Nervoso Central/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Células Th1/metabolismo
19.
Autophagy ; 12(11): 2026-2037, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27541364

RESUMO

Cystic fibrosis (CF) is a fatal, genetic disorder that critically affects the lungs and is directly caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR function. Macroautophagy/autophagy is a highly regulated biological process that provides energy during periods of stress and starvation. Autophagy clears pathogens and dysfunctional protein aggregates within macrophages. However, this process is impaired in CF patients and CF mice, as their macrophages exhibit limited autophagy activity. The study of microRNAs (Mirs), and other noncoding RNAs, continues to offer new therapeutic targets. The objective of this study was to elucidate the role of Mirs in dysregulated autophagy-related genes in CF macrophages, and then target them to restore this host-defense function and improve CFTR channel function. We identified the Mirc1/Mir17-92 cluster as a potential negative regulator of autophagy as CF macrophages exhibit decreased autophagy protein expression and increased cluster expression when compared to wild-type (WT) counterparts. The absence or reduced expression of the cluster increases autophagy protein expression, suggesting the canonical inverse relationship between Mirc1/Mir17-92 and autophagy gene expression. An in silico study for targets of Mirs that comprise the cluster suggested that the majority of the Mirs target autophagy mRNAs. Those targets were validated by luciferase assays. Notably, the ability of macrophages expressing mutant F508del CFTR to transport halide through their membranes is compromised and can be restored by downregulation of these inherently elevated Mirs, via restoration of autophagy. In vivo, downregulation of Mir17 and Mir20a partially restored autophagy expression and hence improved the clearance of Burkholderia cenocepacia. Thus, these data advance our understanding of mechanisms underlying the pathobiology of CF and provide a new therapeutic platform for restoring CFTR function and autophagy in patients with CF.


Assuntos
Autofagia/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/genética , Fibrose Cística/patologia , Regulação da Expressão Gênica , Macrófagos/metabolismo , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Antagomirs/farmacologia , Autofagia/efeitos dos fármacos , Proteínas Relacionadas à Autofagia/metabolismo , Burkholderia cenocepacia/fisiologia , Células Cultivadas , Fibrose Cística/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Homozigoto , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Células NIH 3T3
20.
Brain ; 139(Pt 6): 1747-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27190026

RESUMO

Transforming growth factor beta (TGFß) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFß signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFß signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFß pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFß-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFß signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFß-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFß signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...