Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391903

RESUMO

The development and growth of the eye depends on normal lens morphogenesis and its growth. This growth, in turn, is dependent on coordinated proliferation of the lens epithelial cells and their subsequent differentiation into fiber cells. These cellular processes are tightly regulated to maintain the precise cellular structure and size of the lens, critical for its transparency and refractive properties. Growth factor-mediated MAPK signaling driven by ERK1/2 has been reported as essential for regulating cellular processes of the lens, with ERK1/2 signaling tightly regulated by endogenous antagonists, including members of the Sprouty and related Spred families. Our previous studies have demonstrated the importance of both these inhibitory molecules in lens and eye development. In this study, we build on these findings to highlight the importance of Spreds in regulating early lens morphogenesis by modulating ERK1/2-mediated lens epithelial cell proliferation and fiber differentiation. Conditional loss of both Spred1 and Spred2 in early lens morphogenesis results in elevated ERK1/2 phosphorylation, hyperproliferation of lens epithelia, and an associated increase in the rate of fiber differentiation. This results in transient microphakia and microphthalmia, which disappears, owing potentially to compensatory Sprouty expression. Our data support an important temporal role for Spreds in the early stages of lens morphogenesis and highlight how negative regulation of ERK1/2 signaling is critical for maintaining lens proliferation and fiber differentiation in situ throughout life.


Assuntos
Cristalino , Sistema de Sinalização das MAP Quinases , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Cristalino/metabolismo , Diferenciação Celular/fisiologia , Transdução de Sinais/fisiologia , Proliferação de Células/fisiologia
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240393

RESUMO

The spheroidal shape of the eye lens is crucial for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that, in the mouse lens, membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating that lamellipodium formation is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controlling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin and actin reduced the height of both early and later fibers, indicating that elongation of these fibers relies on actomyosin contractility. Consistent with this, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose that it does so through regulation of Rho activity.


Assuntos
Fatores de Crescimento de Fibroblastos , Cristalino , Camundongos , Animais , Cristalino/metabolismo , Epitélio/metabolismo , Actinas/metabolismo , Diferenciação Celular/fisiologia
3.
J Mol Histol ; 55(1): 121-138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165569

RESUMO

Differentiation of lens fiber cells involves a complex interplay of signals from growth factors together with tightly regulated gene expression via transcriptional and post-transcriptional regulators. Various studies have demonstrated that RNA-binding proteins, functioning in ribonucleoprotein granules, have important roles in regulating post-transcriptional expression during lens development. In this study, we examined the expression and localization of two members of the BTG/TOB family of RNA-binding proteins, TOB1 and TOB2, in the developing lens and examined the phenotype of mice that lack Tob1. By RT-PCR, both Tob1 and Tob2 mRNA were detected in epithelial and fiber cells of embryonic and postnatal murine lenses. In situ hybridization showed Tob1 and Tob2 mRNA were most intensely expressed in the early differentiating fibers, with weaker expression in anterior epithelial cells, and both appeared to be downregulated in the germinative zone of E15.5 lenses. TOB1 protein was detected from E11.5 to E16.5 and was predominantly detected in large cytoplasmic puncta in early differentiating fiber cells, often co-localizing with the P-body marker, DCP2. Occasional nuclear puncta were also observed. By contrast, TOB2 was detected in a series of interconnected peri-nuclear granules, in later differentiating fiber cells of the inner cortex. TOB2 did not appear to co-localize with DCP2 but did partially co-localize with an early stress granule marker (EIF3B). These data suggest that TOB1 and TOB2 are involved with different aspects of the mRNA processing cycle in lens fiber cells. In vitro experiments using rat lens epithelial explants treated with or without a fiber differentiating dose of FGF2 showed that both TOB1 and TOB2 were up-regulated during FGF-induced differentiation. In differentiating explants, TOB1 also co-localized with DCP2 in large cytoplasmic granules. Analyses of Tob1-/- mice revealed relatively normal lens morphology but a subtle defect in cell cycle arrest of some cells at the equator and in the lens fiber mass of E13.5 embryos. Overall, these findings suggest that TOB proteins play distinct regulatory roles in RNA processing during lens fiber differentiation.


Assuntos
Proteínas de Ciclo Celular , Processamento Pós-Transcricional do RNA , Animais , Camundongos , Ratos , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Grânulos de Ribonucleoproteínas Citoplasmáticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética
4.
bioRxiv ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38106159

RESUMO

The spheroidal shape of the eye lens is critical for precise light focusing onto the retina. This shape is determined by concentrically aligned, convexly elongated lens fiber cells along the anterior and posterior axis of the lens. Upon differentiation at the lens equator, the fiber cells increase in height as their apical and basal tips migrate towards the anterior and posterior poles, respectively. The forces driving this elongation and migration remain unclear. We found that membrane protrusions or lamellipodia are observed only in the maturing fibers undergoing cell curve conversion, indicating lamellipodium is not the primary driver of earlier fiber migration. We demonstrated that elevated levels of fibroblast growth factor (FGF) suppressed the extension of Rac-dependent protrusions, suggesting changes in the activity of FGF controling Rac activity, switching to lamellipodium-driven migration. Inhibitors of ROCK, myosin, and actin reduced the height of both early and later fibers, indicating elongation of these fibers relies on actomyosin contractility. Consistently, active RhoA was detected throughout these fibers. Given that FGF promotes fiber elongation, we propose it to do so through regulation of Rho activity.

5.
Cells ; 12(10)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37408198

RESUMO

Heparan sulphate proteoglycans (HSPGs) consist of a core protein decorated with sulphated HS-glycosaminoglycan (GAG) chains. These negatively charged HS-GAG chains rely on the activity of PAPSS synthesising enzymes for their sulfation, which allows them to bind to and regulate the activity of many positively charged HS-binding proteins. HSPGs are found on the surfaces of cells and in the pericellular matrix, where they interact with various components of the cell microenvironment, including growth factors. By binding to and regulating ocular morphogens and growth factors, HSPGs are positioned to orchestrate growth factor-mediated signalling events that are essential for lens epithelial cell proliferation, migration, and lens fibre differentiation. Previous studies have shown that HS sulfation is essential for lens development. Moreover, each of the full-time HSPGs, differentiated by thirteen different core proteins, are differentially localised in a cell-type specific manner with regional differences in the postnatal rat lens. Here, the same thirteen HSPG-associated GAGs and core proteins as well as PAPSS2, are shown to be differentially regulated throughout murine lens development in a spatiotemporal manner. These findings suggest that HS-GAG sulfation is essential for growth factor-induced cellular processes during embryogenesis, and the unique and divergent localisation of different lens HSPG core proteins indicates that different HSPGs likely play specialized roles during lens induction and morphogenesis.


Assuntos
Glicosaminoglicanos , Proteoglicanas de Heparan Sulfato , Animais , Camundongos , Ratos , Morfogênese , Diferenciação Celular , Proteínas da Matriz Extracelular
6.
Cells ; 12(6)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36980168

RESUMO

Fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-ß) can regulate and/or dysregulate lens epithelial cell (LEC) behaviour, including proliferation, fibre differentiation, and epithelial-mesenchymal transition (EMT). Earlier studies have investigated the crosstalk between FGF and TGF-ß in dictating lens cell fate, that appears to be dose dependent. Here, we tested the hypothesis that a fibre-differentiating dose of FGF differentially regulates the behaviour of lens epithelial cells undergoing TGF-ß-induced EMT. Postnatal 21-day-old rat lens epithelial explants were treated with a fibre-differentiating dose of FGF-2 (200 ng/mL) and/or TGF-ß2 (50 pg/mL) over a 7-day culture period. We compared central LECs (CLECs) and peripheral LECs (PLECs) using immunolabelling for changes in markers for EMT (α-SMA), lens fibre differentiation (ß-crystallin), epithelial cell adhesion (ß-catenin), and the cytoskeleton (alpha-tropomyosin), as well as Smad2/3- and MAPK/ERK1/2-signalling. Lens epithelial explants cotreated with FGF-2 and TGF-ß2 exhibited a differential response, with CLECs undergoing EMT while PLECs favoured more of a lens fibre differentiation response, compared to the TGF-ß-only-treated explants where all cells in the explants underwent EMT. The CLECs cotreated with FGF and TGF-ß immunolabelled for α-SMA, with minimal ß-crystallin, whereas the PLECs demonstrated strong ß-crystallin reactivity and little α-SMA. Interestingly, compared to the TGF-ß-only-treated explants, α-SMA was significantly decreased in the CLECs cotreated with FGF/TGF-ß. Smad-dependent and independent signalling was increased in the FGF-2/TGF-ß2 co-treated CLECs, that had a heightened number of cells with nuclear localisation of Smad2/3 compared to the PLECs, that in contrast had more pronounced ERK1/2-signalling over Smad2/3 activation. The current study has confirmed that FGF-2 is influential in differentially regulating the behaviour of LECs during TGF-ß-induced EMT, leading to a heterogenous cell population, typical of that observed in the development of post-surgical, posterior capsular opacification (PCO). This highlights the cooperative relationship between FGF and TGF-ß leading to lens pathology, providing a different perspective when considering preventative measures for controlling PCO.


Assuntos
Opacificação da Cápsula , Fator de Crescimento Transformador beta2 , Ratos , Animais , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Transição Epitelial-Mesenquimal , Opacificação da Cápsula/metabolismo , Células Epiteliais/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , beta-Cristalinas/metabolismo
7.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766843

RESUMO

Lens epithelial explants are comprised of lens epithelial cells cultured in vitro on their native basement membrane, the lens capsule. Biologists have used lens epithelial explants to study many different cellular processes including lens fiber cell differentiation. In these studies, fiber differentiation is typically measured by cellular elongation and the expression of a few proteins characteristically expressed by lens fiber cells in situ. Chromatin and RNA was collected from lens epithelial explants cultured in either un-supplemented media or media containing 50% bovine vitreous humor for one or five days. Chromatin for ATAC-sequencing and RNA for RNA-sequencing was prepared from explants to assess regions of accessible chromatin and to quantitatively measure gene expression, respectively. Vitreous humor increased chromatin accessibility in promoter regions of genes associated with fiber differentiation and, surprisingly, an immune response, and this was associated with increased transcript levels for these genes. In contrast, vitreous had little effect on the accessibility of the genes highly expressed in the lens epithelium despite dramatic reductions in their mRNA transcripts. An unbiased analysis of differentially accessible regions revealed an enrichment of cis-regulatory motifs for RUNX, SOX and TEAD transcription factors that may drive differential gene expression in response to vitreous.


Assuntos
Cromatina , Corpo Vítreo , Animais , Bovinos , Diferenciação Celular/genética , RNA , Imunidade Inata
8.
Prog Retin Eye Res ; 93: 101118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36068128

RESUMO

Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.


Assuntos
Proteoglicanas de Heparan Sulfato , Cristalino , Proteoglicanas de Heparan Sulfato/genética , Proteoglicanas de Heparan Sulfato/metabolismo , Transdução de Sinais , Proteínas da Matriz Extracelular , Cristalino/metabolismo
9.
Exp Eye Res ; 219: 109070, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35413282

RESUMO

Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) principally contributes to the pathogenesis of fibrotic cataract. Sprouty (Spry) and Spred proteins are receptor tyrosine kinase (RTK) antagonists that can regulate RTK-mediated signaling pathways, such as the MAPK/ERK1/2-signaling pathway. The present study examines the ability of Spry and Spred to inhibit TGFß-induced EMT in LECs. LECs explanted from postnatal-day-21 Wistar rats were transduced with adenoviral vectors coding for Spry1, Spry2 or Spred2, and subsequently treated with or without TGFß2. Immunofluorescent labeling of explants for the epithelial membrane marker ß-catenin, and the mesenchymal marker alpha-smooth muscle actin (α-sma), were used to characterize the progression of EMT. Western blotting was used to quantify levels of α-sma and ERK1/2-signaling. Overexpression of Spry or Spred in LECs was sufficient to suppress EMT in response to TGFß, including a block to cell elongation, ß-catenin delocalization and α-sma accumulation. Spry and Spred were also shown to significantly block ERK1/2 phosphorylation for up to 18 h of TGFß treatment but did not impair the earlier activation of ERK1/2 at 20 min. These findings suggest that Spry and Spred may not directly impact ERK1/2-signaling activated by the serine/threonine kinase TGFß receptor, but may selectively target later ERK1/2-signaling driven by downstream RTK-mediated signaling. Taken together, our data establish Spry and Spred antagonists as potent negative regulators of TGFß-induced EMT that can regulate ERK1/2-signaling in a temporal manner. A greater understanding of how Spry and Spred regulate the complex signaling interactions that underlie TGFß-induced EMT will be essential to facilitate the development of novel therapeutics for different pathologies driven by EMT, including fibrotic forms of cataract.


Assuntos
Catarata , Cristalino , Animais , Catarata/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , beta Catenina/metabolismo
10.
Invest Ophthalmol Vis Sci ; 62(14): 5, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34730792

RESUMO

Purpose: The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods: Semiquantitative real-time (RT)-PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results: The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions: These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteoglicanas de Heparan Sulfato/genética , Cristalino/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sulfatos de Condroitina/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/antagonistas & inibidores , Heparitina Sulfato/metabolismo , Cristalino/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Ureia/análogos & derivados , Ureia/farmacologia
11.
Cells ; 10(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685584

RESUMO

Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFß) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFß-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.


Assuntos
Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cristalino/metabolismo , Cristalino/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Catarata/metabolismo , Proliferação de Células/fisiologia , Humanos , Fator de Crescimento Transformador beta/metabolismo
12.
Front Surg ; 8: 639500, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513910

RESUMO

Collagens represent a major group of structural proteins expressed in different tissues and display distinct and variable properties. Whilst collagens are non-transparent in the skin, they confer transparency in the cornea and crystalline lens of the eye. There are 28 types of collagen that all share a common triple helix structure yet differ in the composition of their α-chains leading to their different properties. The different organization of collagen fibers also contributes to the variable tissue morphology. The important ability of collagen to form different tissues has led to the exploration and application of collagen as a biomaterial. Collagen type I (Col-I) and collagen type IV (Col-IV) are the two primary collagens found in corneal and lens tissues. Both collagens provide structure and transparency, essential for a clear vision. This review explores the application of these two collagen types as novel biomaterials in bioengineering unique tissue that could be used to treat a variety of ocular diseases leading to blindness.

13.
Exp Eye Res ; 210: 108709, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339681

RESUMO

Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.


Assuntos
Envelhecimento/fisiologia , Biomarcadores/metabolismo , Catarata/metabolismo , Cristalino/metabolismo , Animais , Apoptose , Senescência Celular , Homeostase , Humanos , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
14.
Exp Eye Res ; 206: 108546, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773977

RESUMO

Transforming growth factor beta (TGFß) and bone morphogenetic protein (BMP) signaling play opposing roles in epithelial-mesenchymal transition (EMT) of lens epithelial cells, a cellular process integral to the pathogenesis of fibrotic cataract. We previously showed that BMP-7-induced Smad1/5 signaling blocks TGFß-induced Smad2/3-signaling and EMT in rat lens epithelial cell explants. To further explore the antagonistic role of BMPs on TGFß-signaling, we tested the capability of BMP-4 or newly described BMP agonists, ventromorphins, in blocking TGFß-induced lens EMT. Primary rat lens epithelial explants were treated with exogenous TGFß2 alone, or in combination with BMP-4 or ventromorphins. Treatment with TGFß2 induced lens epithelial cells to undergo EMT and transdifferentiate into myofibroblastic cells with upregulated α-SMA and nuclear translocation of Smad2/3 immunofluorescence. BMP-4 was able to suppress this EMT without blocking TGFß2-nuclear translocation of Smad2/3. In contrast, the BMP agonists, ventromorphins, were unable to block TGFß2-induced EMT, despite a transient and early ability to significantly reduce TGFß2-induced nuclear translocation of Smad2/3. This intriguing disparity highlights new complexities in the responsiveness of the lens to differing BMP-related signaling. Further research is required to better understand the antagonistic relationship between TGFß and BMPs in lens EMT leading to cataract.


Assuntos
Proteína Morfogenética Óssea 4/agonistas , Catarata/tratamento farmacológico , Cristalino/efeitos dos fármacos , Animais , Proteína Morfogenética Óssea 4/metabolismo , Catarata/metabolismo , Catarata/patologia , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Cristalino/metabolismo , Cristalino/patologia , Masculino , Ratos , Ratos Wistar , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
15.
Int J Radiat Biol ; 96(11): 1339-1361, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32897800

RESUMO

PURPOSE: Since the exact development of posterior subcapsular cataracts (PSCs) is poorly understood, we review various risk factors and propose a two-stage etiology for PSCs. METHODS: The biological mechanisms associated with age-related cataracts (primarily nuclear cataracts, cortical cataracts and PSCs) were reviewed in relation to selected risk factors that induce PSCs (including atopy, diabetes, hypoparathyroidism, myopia, retinitis, solar radiation, steroid use, uveitis, vitrectomy and ionizing radiation). We particularly focused on ionizing radiation, as this is known to be a risk factor specific to PSCs. Based on an analysis of the reviewed material, we propose a detailed explanation of the etiology of PSCs. CONCLUSIONS: Lens epithelial cells (LECs) and lens fiber cells are normally hypoxic and therefore very sensitive to changes in oxidative stress, as quantified by the radiation oxygen effect. We hypothesize that the development of PSC opacities is a two-stage process. Stage I, early in life, is driven by risk factors that promote oxidative stress and ion-pump disruption, harming lens fibers and causing aberrant LECs to proliferate and ectopically migrate as Wedl cells (perhaps by processes associated with an epithelial to mesenchymal transition) to the posterior pole region. After a latent period, in Stage II, the development of PSCs advances mainly due to chronic inflammation and other premature aging-related mechanisms that promote mature vacuolar or plaque PSC. This two-stage hypothesis of PSC etiology accounts for risk factors, such as aging, diabetes and ionizing radiation, which directly affects LECs and the lens. In addition, these risk factors can damage other ocular regions, such as the retina and vitreous, that also indirectly contribute to the development of PSCs. It is possible that the incidence of PSCs may be reduced by reversing the effects of Stage I through various means, including ocular antioxidants.


Assuntos
Envelhecimento , Catarata/etiologia , Complicações do Diabetes/etiologia , Lesões por Radiação/etiologia , Catarata/epidemiologia , Catarata/fisiopatologia , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/fisiopatologia , Humanos , Lesões por Radiação/epidemiologia , Lesões por Radiação/fisiopatologia , Fatores de Risco
16.
Dev Biol ; 467(1-2): 1-13, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858001

RESUMO

Fibroblast growth factor receptor (FGFR) signaling patterns multiple tissues in both vertebrates and invertebrates, largely through the activation of intracellular kinases. Recent studies have demonstrated that the phosphatase, PTEN negatively regulates FGFR signaling, such that the loss of PTEN can compensate for reduced FGFR signaling to rescue aspects of normal development. In the developing mouse lens, FGFR signaling promotes cell survival and fiber cell differentiation, and the loss of Pten largely compensates for the loss of Fgfr2 during lens development. To explore this regulatory relationship further, we focused on the phenotypic consequences of Pten loss on lens development and fiber cell differentiation in the absence of all FGFR signaling, both in vivo and in lens epithelial explants. Pten deletion partially rescues primary fiber cell elongation and γ-crystallin accumulation in FGFR-deficient lenses in vivo but fails to rescue cell survival or proliferation. However, in lens epithelial explants, where cells survive without FGFR signaling, Pten deletion rescues vitreous humor-induced lens fiber cell differentiation in the combined absence of Fgfr1, Fgfr2 and Fgfr3. This represents the first evidence that vitreous-initiated signaling cascades, independent of FGFR signaling, can drive mammalian lens fiber cell differentiation, when freed from repression by PTEN.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Cristalino/embriologia , PTEN Fosfo-Hidrolase/deficiência , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética
17.
Exp Eye Res ; 191: 107917, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31923414

RESUMO

The transparent and refractive properties of the ocular lens are dependent on its precise cellular structure, supported by the regulation of lens cellular processes of proliferation and differentiation that are essential throughout life. The ERK/MAPK-signalling pathway plays a crucial role in regulating lens cell proliferation and differentiation, and in turn is regulated by inhibitory molecules including the Spred family of proteins to modulate and attenuate the impact of growth factor stimulation. Given Spreds are strongly and distinctly expressed in lens, along with their established inhibitory role in a range of different tissues, we investigated the role these antagonists play in regulating lens cell proliferation and differentiation, and their contribution to lens structure and growth. Using established mice lines deficient for either or both Spred 1 and Spred 2, we demonstrate their role in regulating lens development by negatively regulating ERK1/2 activity. Mice deficient for both Spred 1 and Spred 2 have impaired lens and eye development, displaying irregular lens epithelial and fibre cell activity as a result of increased levels of phosphorylated ERK1/2. While Spred 1 and Spred 2 do not appear to be necessary for induction and early stages of lens morphogenesis (prior to E11.5), nor for the formation of the primary fibre cells, they are required for the continuous embryonic growth and differentiation of the lens.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Olho/embriologia , Cristalino/embriologia , Morfogênese/fisiologia , Proteínas Repressoras/fisiologia , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Técnicas de Genotipagem , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Reação em Cadeia da Polimerase
18.
Exp Eye Res ; 185: 107692, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189078

RESUMO

Many of the small molecule-based inhibitors of NADPH oxidase activity are largely inadequate to substantiate broad claims, often exhibiting a lack of Nox-isoform-specificity, and sometimes only acting as scavengers of reactive oxygen species (ROS). In the present study, we use a newly developed highly selective Nox4 inhibitor, GLX7013114, to modulate TGFß-induced lens epithelial to mesenchymal transition (EMT). Rat lens epithelial explants were pre-treated with 0.3  µM of GLX7013114, and then treated with 200 pg/ml of TGF-ß2 to induce lens EMT. ROS production was visualized microscopically using the superoxide fluorogenic probe, dihydroethidium (DHE). The EMT process was documented using phase-contrast microscopy, and molecular EMT markers were immunolabeled. qPCR was also performed to observe changes in EMT-associated genes. TGFß-induced ROS was evident at 8 h of culture and its intensity was found to be significantly reduced when GLX7013114 was applied, comparable to ROS levels measured in untreated explants. Using phase-contrast microscopy to follow TGFß-induced EMT over 5 days in the presence of the inhibitor, lens epithelial cells in explants became myofibroblastic by day 2 and underwent progressive apoptosis to reveal a bare lens capsule by day 5. Explants treated with TGFß and GLX7013114 had some increased cell survival; however, these differences were not significant. For the first time, Nox4 inhibition by GLX7013114 was shown to reduce the TGFß-induced gene expression of α-smooth muscle actin (αSMA), collagen 1a and fibronectin. GLX7013114, given that it appears to block aspects of TGFß-induced EMT, including ROS production, may be a new useful Nox4-selective inhibitor for further studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/citologia , NADPH Oxidase 4/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia , Actinas/metabolismo , Animais , Colágeno Tipo I/metabolismo , Células Epiteliais/metabolismo , Fibronectinas/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Microscopia de Contraste de Fase , NADPH Oxidases/antagonistas & inibidores , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
19.
Exp Eye Res ; 185: 107693, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201806

RESUMO

The ocular lens is exposed to numerous growth factors that influence its behavior in diverse ways. While many of these, such as FGF and EGF promote normal cell behavior, TGFß is unique in that it can also induce lens cell pathology, namely, the epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) leading to fibrotic cataract formation. The present study explores how EGF impacts on TGFß-induced EMT in the lens. LECs in explants prepared from 21-day-old Wistar rats were treated with either 200 pg/ml TGFß2, 5 ng/ml EGF, or a combination of these, with or without a 2-h pre-treatment of an EGFR inhibitor (PD153035), MEK inhibitor (U0126) or Smad3 inhibitor (SIS3). Co-treatment of LECs with TGFß2 and EGF, compared with TGFß2 alone, resulted in a more pronounced elongation and transdifferentiation of the LECs into myofibroblastic cells, with higher protein levels of mesenchymal cell markers (α-SMA and tropomyosin). Combining EGF with a less potent lower dose of TGFß2 (50 pg/ml) induced LECs to undergo EMT equivalent to treatment with a higher dose of TGFß2 (200 pg/ml) within 5 days of culture. EGF alone, nor the lower dose of TGFß2, were able to induce EMT in LECs within 5 days. Co-treatment of LECs with EGF and TGFß2 induced a temporal shift in the phosphorylation levels of Smad2/3, ERK1/2 and EGFR and changed the expression patterns of downstream EMT target genes, compared to treatment of LECs with either growth factor alone. Inhibition of EGFR-signaling with PD153035 blocked the EMT response induced by co-treatment with EGF and TGFß2. Taken together, our data demonstrate that EGF can potentiate TGFß2 activity to enhance EMT in LECs, further highlighting the importance of EGFR-signaling in cataract formation. By directly blocking EGFR signaling, the activity of both EGF and TGFß2 can be simultaneously reduced, thereby serving as a potential target for cataract prevention.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/citologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta2/farmacologia , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Sinergismo Farmacológico , Eletroforese em Gel de Poliacrilamida , Células Epiteliais/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Sistema de Sinalização das MAP Quinases/fisiologia , Fosforilação , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Tropomiosina/metabolismo
20.
Exp Eye Res ; 178: 108-121, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30290164

RESUMO

Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a critical role in the pathogenesis of fibrotic cataract. Transforming growth factor-beta (TGFß) is a potent inducer of this fibrotic process in lens. Recent studies in cancer progression have shown that in addition to activating the canonical Smad signaling pathway, TGFß can also transactivate the epidermal growth factor receptor (EGFR) to enhance invasive cell migration. The present study aims to elucidate the involvement of EGFR-signaling in TGFß-induced EMT in LECs. Treatment with TGFß2 induced transdifferentiation of LECs into myofibroblastic cells, typical of an EMT. TGFß2 induced the phosphorylation of the EGFR and upregulation of Egfr and Hb-egf gene expression. Pharmacologic inhibition of EGFR-signaling using PD153035 inhibited TGFß-induced EMT, including the upregulation of mesenchymal markers and downregulation of epithelial markers. Crosstalk between TGFß2-induced EGFR and ERK1/2 was evident, with both pathways impacting on Smad2/3-signaling. Our finding that TGFß2 transactivates downstream EGFR-signaling reveals a previously unknown mechanism in the pathogenesis of cataract. Understanding the complex interplay between divergent canonical and non-canonical signaling pathways, as well as downstream target genes involved in TGFß-induced EMT, will enable the development of more effective targeted therapies in the pharmacological treatment of cataract.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta2/farmacologia , Actinas/metabolismo , Animais , Western Blotting , Movimento Celular , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Fosforilação , Quinazolinas/farmacologia , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...