Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev Argent Microbiol ; 51(4): 386-397, 2019.
Artigo em Espanhol | MEDLINE | ID: mdl-30712956

RESUMO

Among the main beer components, fusel alcohols are important because of their influence on the flavor of the final product, and therefore on its quality. During the production process, these compounds are generated by yeasts through the metabolism of amino acids. The yeasts, fermentation conditions and wort composition affect fusel alcohols profiles and their concentrations. In this review, we provide detailed information about the enzymes involved in fusel alcohols formation and their regulation. Moreover, we describe how the type of yeast used, the fermentation temperature and the composition of carbohydrates and nitrogen source in wort, among other fermentation parameters, affect the biosynthesis of these alcohols. Knowing how fusel alcohol levels vary during beer production provides a relevant tool for brewers to achieve the desired characteristics in the final product and at the same time highlights the aspects still unknown to science.


Assuntos
Álcoois/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcoois/análise , Cerveja/análise , Fermentação
2.
Rev. argent. microbiol ; 50(4): 436-446, Dec. 2018. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-977268

RESUMO

Las levaduras, durante el proceso de elaboración de cerveza, producen más de 500 compuestos químicos; estos pueden impactar tanto negativa como positivamente en las características organolépticas de la cerveza. En los últimos años, y en particular gracias al avance de la biología molecular y la genómica, se han logrado progresos notables en el conocimiento de las bases moleculares y celulares de la síntesis y regulación de muchos de estos compuestos que inciden en lo que se denomina flavor (aroma y sabor) de la cerveza. Este artículo está enfocado en los ésteres responsables del aroma y el sabor floral y frutado de la cerveza. La formación de estos ésteres depende de diversas enzimas y de factores como la concentración de nutrientes presente en el mosto, la cantidad de oxígeno y dióxido de carbono disuelto, la temperatura de fermentación y, principalmente, la genética de la levadura utilizada. En esta revisión se brinda información de cómo se originan los ésteres y cómo los diferentes parámetros fermentativos impactan en las concentraciones finales de estos compuestos y en la calidad del producto terminado.


During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product.


Assuntos
Saccharomyces cerevisiae/metabolismo , Ésteres/metabolismo , Aromatizantes
3.
Rev Argent Microbiol ; 50(4): 436-446, 2018.
Artigo em Espanhol | MEDLINE | ID: mdl-29627148

RESUMO

During brewing process yeast produce more than 500 chemical compounds that can negatively and positively impact beer at the organoleptic level. In recent years, and particularly thanks to the advancement of molecular biology and genomics, there has been considerable progress in our understanding about the molecular and cellular basis of the synthesis and regulation of many of these flavor compounds. This article focuses on esters, responsible for the floral and fruity beer flavor. Its formation depends on various enzymes and factors such as the concentration of wort nutrients, the amount of dissolved oxygen and carbon dioxide, fermentation temperature and mainly the genetics of the yeast used. We provide information about how the esters originate and how is the impact of different fermentative parameters on the final concentrations of these compounds and the quality of the end product.


Assuntos
Ésteres/metabolismo , Saccharomyces cerevisiae/metabolismo , Aromatizantes
4.
Microb Ecol ; 71(1): 100-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26547568

RESUMO

We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.


Assuntos
Alcanos/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Sedimentos Geológicos/análise , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Filogenia , Água do Mar/análise , Água do Mar/microbiologia , Poluentes Químicos da Água/análise
5.
Microb Ecol ; 64(3): 605-16, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22580956

RESUMO

Although sediments are the natural hydrocarbon sink in the marine environment, the ecology of hydrocarbon-degrading bacteria in sediments is poorly understood, especially in cold regions. We studied the diversity of alkane-degrading bacterial populations and their response to oil exposure in sediments of a chronically polluted Subantarctic coastal environment, by analyzing alkane monooxygenase (alkB) gene libraries. Sequences from the sediment clone libraries were affiliated with genes described in Proteobacteria and Actinobacteria, with 67 % amino acid identity in average to sequences from isolated microorganisms. The majority of the sequences were most closely related to uncultured microorganisms from cold marine sediments or soils from high latitude regions, highlighting the role of temperature in the structuring of this bacterial guild. The distribution of alkB sequences among samples of different sites and years, and selection after experimental oil exposure allowed us to identify ecologically relevant alkB genes in Subantarctic sediments, which could be used as biomarkers for alkane biodegradation in this environment. 16 S rRNA amplicon pyrosequencing indicated the abundance of several genera for which no alkB genes have yet been described (Oleispira, Thalassospira) or that have not been previously associated with oil biodegradation (Spongiibacter-formerly Melitea-, Maribius, Robiginitomaculum, Bizionia and Gillisia). These genera constitute candidates for future work involving identification of hydrocarbon biodegradation pathway genes.


Assuntos
Alcanos/metabolismo , Citocromo P-450 CYP4A/genética , Poluentes Ambientais/metabolismo , Gammaproteobacteria/genética , Sedimentos Geológicos/microbiologia , Petróleo/metabolismo , Regiões Antárticas , Biodegradação Ambiental , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA