Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 201: 26-33, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34273478

RESUMO

In recent years, the usage of digital polymerase chain reaction (dPCR) for various clinical applications has increased exponentially. In this study, a dPCR assay optimized on the Clarity Plus™ dPCR system was evaluated for the absolute quantification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) outbreak. The assay demonstrated good inter- and intra- assay precision, accuracy, as well as excellent linearity across a range of over 6 orders of magnitude for target gene quantification. In addition, a comparison of the assay on both dPCR and qPCR platforms revealed that dPCR exhibited a slightly higher sensitivity compared to its qPCR counterpart when quantifying SARS-CoV-2 at a lower concentration. Overall, the results showed that the dPCR assay is a reliable and effective approach for the absolute quantification of SARS-CoV-2 and can be a valuable molecular tool in clinical applications such as detecting low viral loads in patients as well as in wastewater surveillance of COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , Águas Residuárias/análise , Vigilância Epidemiológica Baseada em Águas Residuárias
2.
Anal Bioanal Chem ; 409(7): 1869-1875, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27988800

RESUMO

In recent years, digital polymerase chain reaction (dPCR) has gained recognition in biomedical research as it provides a platform for precise and accurate quantification of nucleic acids without the need for a standard curve. However, this technology has not yet been widely adopted as compared to real-time quantitative PCR due to its more cumbersome workflow arising from the need to sub-divide a PCR sample into a large number of smaller partitions prior to thermal cycling to achieve zero or at least one copy of the target RNA/DNA per partition. A recently launched platform, the Clarity™ system from JN Medsys, simplifies dPCR workflow through the use of a novel chip-in-a-tube technology for sample partitioning. In this study, the performance of Clarity™ was evaluated through quantification of the single-copy human RNase P gene. The system demonstrated high precision and accuracy and also excellent linearity across a range of over 4 orders of magnitude for the absolute quantification of the target gene. Moreover, consistent DNA copy measurements were also attained using a panel of different probe- and dye-based master mixes, demonstrating the system's compatibility with commercial master mixes. The Clarity™ was then compared to the QX100™ droplet dPCR system from Bio-Rad using a set of DNA reference materials, and the copy number concentrations derived from both systems were found to be closely associated. Collectively, the results showed that Clarity™ is a reliable, robust and flexible platform for next-generation genetic analysis.


Assuntos
Ácidos Nucleicos/análise , Reação em Cadeia da Polimerase/métodos , Humanos , Ribonuclease P/genética
3.
Sci Rep ; 6(1): 13, 2016 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28442757

RESUMO

Quantification of Epstein-Barr virus (EBV) cell-free DNA (cfDNA) is commonly used in clinical settings as a circulating biomarker in nasopharyngeal carcinoma (NPC), but there has been no comparison with circulating tumour cells (CTCs). Our study aims to compare the performance of CTC enumeration against EBV cfDNA quantitation through digital PCR (dPCR) and quantitative PCR. 74 plasma samples from 46 NPC patients at baseline and one month after radiotherapy with or without concurrent chemotherapy were analysed. CTCs were captured by microsieve technology and enumerated, while three different methods of EBV cfDNA quantification were applied, including an in-house qPCR assay for BamHI-W fragment, a CE-IVD qPCR assay (Sentosa ®) and a dPCR (Clarity™) assay for Epstein-Barr nuclear antigen 1 (EBNA1). EBV cfDNA quantitation by all workflows showed stronger correlation with clinical stage, radiological response and overall survival in comparison with CTC enumeration. The highest detection rate of EBV cfDNA in pre-treatment samples was seen with the BamHI-W qPCR assay (89%), followed by EBNA1-dPCR (85%) and EBNA1-qPCR (67%) assays. Overall, we show that EBV cfDNA outperforms CTC enumeration in correlation with clinical outcomes of NPC patients undergoing treatment. Techniques such as dPCR and target selection of BamHI-W may improve sensitivity for EBV cfDNA detection.


Assuntos
Carcinoma/sangue , Carcinoma/virologia , DNA Viral/sangue , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/sangue , Neoplasias Nasofaríngeas/virologia , Células Neoplásicas Circulantes/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma/patologia , Carcinoma/radioterapia , Antígenos Nucleares do Vírus Epstein-Barr/sangue , Feminino , Herpesvirus Humano 4/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/radioterapia , Resultado do Tratamento , Adulto Jovem
4.
Parasitology ; 141(9): 1177-91, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24560171

RESUMO

Co-chaperones are well-known regulators of heat shock protein 90 (Hsp90). Hsp90 is a molecular chaperone that is essential in the eukaryotes for the folding and activation of numerous proteins involved in important cellular processes such as signal transduction, growth and developmental regulation. Co-chaperones assist Hsp90 in the protein folding process by modulating conformational changes to promote client protein interaction and functional maturation. With the recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a potential antimalarial drug target, there is obvious interest in the study of its co-chaperones in their partnership in regulating cellular processes in malaria parasite. Previous studies on PfHsp90 have identified more than 10 co-chaperones in P. falciparum genome. However, many of them remained annotated as putative proteins as their functionality has not been validated experimentally. So far, only five co-chaperones, PfHop, Pfp23, PfAha1, PfPP5 and PfFKBP35 have been characterized and shown to interact with PfHsp90. This review will summarize current knowledge on the co-chaperones in P. falciparum and discuss their regulatory roles on PfHsp90. As certain eukaryotic co-chaperones have also been implicated in altering the affinity of Hsp90 for its inhibitor, this review will also examine plasmodial co-chaperones' potential influence on approaches towards designing antimalarials targeting PfHsp90.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Proteínas de Choque Térmico HSP90/genética , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
5.
Cell Mol Life Sci ; 69(9): 1523-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22116321

RESUMO

Despite the absence of classical tyrosine kinases encrypted in the kinome of Plasmodium falciparum, biochemical analyses have detected significant tyrosine phosphorylation in its cell lysates. Supporting such phosphorylation is critical for parasite development. These observations have thus raised queries regarding the plasmodial enzymes accountable for tyrosine kinase activities in vivo. In the current investigation, immunoblot analysis intriguingly demonstrated that Pfnek3, a plasmodial mitogen-activated protein kinase kinase (MAPKK), displayed both serine/threonine and tyrosine kinase activities in autophosphorylation reactions as well as in phosphorylation of the exogenous myelin basic protein substrate. The results obtained strongly support Pfnek3 as a novel dual-specificity kinase of the malarial parasite, even though it displays a HGDLKSTN motif in the catalytic loop that resembles the consensus HRDLKxxN signature found in the serine/threonine kinases. Notably, its serine/threonine and tyrosine kinase activities were found to be distinctly influenced by Mg(2+) and Mn(2+) cofactors. Further probing into the regulatory mechanism of Pfnek3 also revealed tyrosine phosphorylation to be a crucial factor that stimulates its kinase activity. Through biocomputational analyses and functional assays, tyrosine residues Y117, Y122, Y172, and Y238 were proposed as phosphorylation sites essential for mediating the catalytic activities of Pfnek3. The discovery of Pfnek3's dual role in phosphorylation marks its importance in closing the loop for cellular regulation in P. falciparum, which remains elusive to date.


Assuntos
Plasmodium falciparum/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Primers do DNA/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/química , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Plasmodium falciparum/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
6.
Int J Biochem Cell Biol ; 44(1): 233-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100910

RESUMO

The recent recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a promising anti-malaria drug target has sparked interest in identifying factors that regulate its function and drug-interaction. Co-chaperones are well-known regulators of Hsp90's chaperone function, and certain members have been implicated in conferring protection against lethal cellular effects of Hsp90-specific inhibitors. In this context, studies on PfHsp90's co-chaperones are imperative to gain insight into the regulation of the chaperone in the malaria parasite. In this study, a putative co-chaperone P. falciparum Aha1 (PfAha1) was identified and investigated for its interaction and regulation of PfHsp90. A previous genome-wide yeast two-hybrid study failed to identify PfAha1's association with PfHsp90, which prompted us to use a directed assay to investigate their interaction. PfAha1 was shown to interact with PfHsp90 via the in vivo split-ubiquitin assay and the association was confirmed in vitro by GST pull-down experiments. The GST pull-down assay further revealed PfAha1's interaction with PfHsp90 to be dependent on MgCl(2) and ATP, and was competed by co-chaperone Pfp23 that binds PfHsp90 under the same condition. In addition, the PfHsp90-PfAha1 complex was found to be sensitive to disruption by high salt, indicating a polar interaction between them. Using bio-computational modelling coupled with site-directed mutagenesis, the polar residue N108 in PfAha1 was found to be strategically located and essential for PfHsp90 interaction. The functional significance of PfAha1's interaction was clearly that of exerting a stimulatory effect on the ATPase activity of PfHsp90, likely to be essential for promoting the activation of PfHsp90's client proteins.


Assuntos
Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Genoma de Protozoário , Proteínas de Choque Térmico HSP90/química , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Alinhamento de Sequência
7.
Cell Mol Life Sci ; 67(10): 1675-86, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20140477

RESUMO

It is well known that the co-chaperone p23 regulates Hsp90 chaperone activity in protein folding. In Plasmodium falciparum, a putative p23 (Pfp23) has been identified through genome analysis, but its authenticity has remained unconfirmed since co-immunoprecipitation experiments failed to show its interaction with P. falciparum Hsp90 (PfHsp90). Thus, recombinant Pfp23 and PfHsp90 proteins purified from expressed clones were used in this study. It was clear that Pfp23 exhibited chaperone activity by virtue of its ability to suppress citrate synthase aggregation at 45 degrees C. Pfp23 was also shown to interact with PfHsp90 and to suppress its ATPase activity. Analyses of modeled Pfp23-PfHsp90 protein complex and site-directed mutagenesis further revealed strategically placed amino acid residues, K91, H93, W94 and K96, in Pfp23 to be crucial for binding PfHsp90. Collectively, this study has provided experimental evidence for the inherent chaperone function of Pfp23 and its interaction with PfHsp90, a sequel widely required for client protein activation.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Aminoácidos , Animais , Clonagem Molecular , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Cloreto de Magnésio/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/química , Proteínas Recombinantes/metabolismo , Sequências Repetitivas de Aminoácidos , Deleção de Sequência , Relação Estrutura-Atividade
8.
Cell Mol Life Sci ; 66(18): 3081-90, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19644735

RESUMO

A mitogen-activated protein kinase (MAPK), Pfmap2, has been identified in Plasmodium falciparum. However, its bona fide activator remains elusive as no MAPK kinase (MAPKK) homologues have been found so far. Instead, Pfnek3, a NIMA (never in mitosis, Aspergillus)-related kinase, was earlier reported to display a MAPKK-like activity due to its activating effect on Pfmap2. In this study, the regulatory mechanism of Pfnek3 was investigated. Pfnek3 was found to possess a SSEQSS motif within its activation loop that fulfills the consensus SXXXS/T phospho-activating sequence of MAPKKs. Functional analyses of the SSEQSS motif by site-directed mutagenesis revealed that phosphorylation of residues S221 and S226 is essential for mediating Pfnek3 activity. Moreover, via tandem mass-spectrometry, residue T82 was uncovered as an additional phosphorylation site involved in Pfnek3 activation. Collectively, these results provide valuable insights into the potential in vivo regulation of Pfnek3, with residues T82, S221 and S226 functioning as phospho-activating sites.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Plasmodium falciparum/enzimologia , Motivos de Aminoácidos , Animais , Sítios de Ligação , Mutagênese Sítio-Dirigida , Fosforilação , Proteínas de Protozoários/metabolismo , Treonina/metabolismo
9.
Biochem Biophys Res Commun ; 361(2): 439-44, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17662247

RESUMO

Eukaryotes generally rely on signal transduction by mitogen-activated protein kinases (MAPKs) for activating their regulatory pathways. However, the presence of a complete MAPK cascade in Plasmodium falciparum is debatable because a search of the entire genome did not portray known MAPK kinase (MAPKK) sequences. Via homology PCR experiments, only two copies of plasmodial MAPK homologues (Pfmap1 and Pfmap2) have been identified but their upstream activators remain unknown. In an earlier experiment, Pfnek3 was found to be an unusual activator of Pfmap2 in in vitro experiments, despite its molecular identity as a malarial protein kinase from the NIMA (Never in Mitosis, Aspergillus) family. In this study, the role of Pfnek3 as a likely upstream MAPKK is defined through molecular and biochemical characterization. Since a previous report proposes a TSH motif as an activation site of Pfmap2, its site-directed mutants, T290A, S291A, and H292K were constructed to elucidate the involvement of Pfnek3 in phosphorylating and activating Pfmap2 in a battery of kinase assays. The results suggested that residue T290 is the site of phosphorylation by Pfnek3. This supposition was further supported by liquid chromatography mass spectrometry. Although P. falciparum does not appear to possess a conventional MAPK cascade, they may rely on other kinases such as Pfnek3 to carry out similar phosphorylation to activate its signaling pathways.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Ativação Enzimática , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Fosforilação , Proteínas de Protozoários/química , Ratos , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...