Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626206

RESUMO

Laboratory model organisms have provided a window into how the immune system functions. An increasing body of evidence, however, suggests that the immune responses of naive laboratory animals may differ substantially to those of their wild counterparts. Past exposure, environmental challenges and physiological condition may all impact on immune responsiveness. Chronic infections of soil-transmitted helminths, which we define as establishment of adult, fecund worms, impose significant health burdens on humans, livestock and wildlife, with limited treatment success. In laboratory mice, Th1 versus Th2 immune polarisation is the major determinant of helminth infection outcome. Here we compared antigen-specific immune responses to the soil-transmitted whipworm Trichuris muris between controlled laboratory and wild free-ranging populations of house mice (Mus musculus domesticus). Wild mice harbouring chronic, low-level infections produced lower levels of cytokines in response to Trichuris antigen than laboratory-housed C57BL/6 mice. Wild mouse effector/memory CD4+ T cell phenotype reflected the antigen-specific cytokine response across the Th1/Th2 spectrum. Increasing egg shedding was associated with body condition loss. However, local Trichuris-specific Th1/Th2 balance was positively associated with worm burden only in older wild mice. Thus, although the fundamental relationships between the CD4+ T helper cell response and resistance to T. muris infection are similar in both laboratory and wild M. m. domesticus, there are quantitative differences and age-specific effects that are analogous to human immune responses. These context-dependent immune responses demonstrate the fundamental importance of understanding the differences between model and natural systems for translating mechanistic models to 'real world' immune function.


Assuntos
Imunidade Adaptativa , Camundongos Endogâmicos C57BL , Tricuríase , Trichuris , Animais , Trichuris/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Camundongos , Imunidade Adaptativa/imunologia , Modelos Animais de Doenças , Feminino , Animais Selvagens/imunologia , Animais Selvagens/parasitologia , Células Th2/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Antígenos de Helmintos/imunologia , Masculino
2.
Sci Rep ; 14(1): 6954, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521809

RESUMO

Mucin protein glycosylation is important in determining biological properties of mucus gels, which form protective barriers at mucosal surfaces of the body such as the intestine. Ecological factors including: age, sex, and diet can change mucus barrier properties by modulating mucin glycosylation. However, as our understanding stems from controlled laboratory studies in house mice, the combined influence of ecological factors on mucin glycosylation in real-world contexts remains limited. In this study, we used histological staining with 'Alcian Blue, Periodic Acid, Schiff's' and 'High-Iron diamine' to assess the acidic nature of mucins stored within goblet cells of the intestine, in a wild mouse population (Mus musculus). Using statistical models, we identified sex as among the most influential ecological factors determining the acidity of intestinal mucin glycans in wild mice. Our data from wild mice and experiments using laboratory mice suggest estrogen signalling associates with an increase in the relative abundance of sialylated mucins. Thus, estrogen signalling may underpin sex differences observed in the colonic mucus of wild and laboratory mice. These findings highlight the significant influence of ecological parameters on mucosal barrier sites and the complementary role of wild populations in augmenting standard laboratory studies in the advancement of mucus biology.


Assuntos
Colo , Mucinas , Camundongos , Feminino , Masculino , Animais , Mucinas/metabolismo , Colo/patologia , Células Caliciformes/metabolismo , Intestinos , Estrogênios/metabolismo , Mucina-2/metabolismo , Mucosa Intestinal/metabolismo
3.
Discov Immunol ; 2(1): kyad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567065

RESUMO

The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.

4.
Immunology ; 164(4): 766-776, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34486729

RESUMO

With a long history of promoting pathological inflammation, eosinophils are now emerging as important regulatory cells. Yet, findings from controlled laboratory experiments so far lack translation to animals, including humans, in their natural environment. In order to appreciate the breadth of eosinophil phenotype under non-laboratory, uncontrolled conditions, we exploit a free-living population of the model organism Mus musculus domesticus. Eosinophils were present at significantly higher proportions in the spleen and bone marrow of wild mice compared with laboratory mice. Strikingly, the majority of eosinophils of wild mice exhibited a unique Ly6Ghi phenotype seldom described in laboratory literature. Ly6G expression correlated with activation status in spleen and bone marrow, but not peritoneal exudate cells, and is therefore likely not an activation marker per se. Intermediate Ly6G expression was transiently induced in a small proportion of eosinophils from C57BL/6 laboratory mice during acute infection with the whipworm Trichuris muris, but not during low-dose chronic infection, which better represents parasite exposure in the wild. We conclude that the natural state of the eosinophil is not adequately reflected in the standard laboratory mouse, which compromises our attempts to dissect their functional relevance. Our findings emphasize the importance of studying the immune system in its natural context - alongside more mechanistic laboratory experiments - in order to capture the entirety of immune phenotypes and functions.


Assuntos
Animais Selvagens , Antígenos Ly/metabolismo , Biomarcadores , Eosinófilos/imunologia , Eosinófilos/metabolismo , Animais , Imunofenotipagem , Contagem de Leucócitos , Camundongos , Especificidade de Órgãos/imunologia
5.
Funct Ecol ; 33(8): 1425-1435, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31588159

RESUMO

The ability, propensity and need to mount an immune response vary both among individuals and within a single individual over time.A wide array of parameters has been found to influence immune state in carefully controlled experiments, but we understand much less about which of these parameters are important in determining immune state in wild populations.Diet can influence immune responses, for example when nutrient availability is limited. We therefore predict that natural dietary variation will play a role in modulating immune state, but this has never been tested.We measured carbon and nitrogen stable isotope ratios in an island population of house mice Mus musculus domesticus as an indication of dietary variation, and the expression of a range of immune-related genes to represent immune state.After accounting for potential confounding influences such as age, sex and helminth load, we found a significant association between carbon isotope ratio and levels of immune activity in the mesenteric lymph nodes, particularly in relation to the inflammatory response.This association demonstrates the important interplay between diet and an animal's response to immune challenges, and therefore potentially its susceptibility to disease. A plain language summary is available for this article.

6.
PLoS One ; 14(9): e0222501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557179

RESUMO

The composition of the mammalian gut microbiota can be influenced by a multitude of environmental variables such as diet and infections. Studies investigating the effect of these variables on gut microbiota composition often sample across multiple separate populations and habitat types. In this study we explore how variation in the gut microbiota of the house mouse (Mus musculus domesticus) on the Isle of May, a small island off the east coast of Scotland, is associated with environmental and biological factors. Our study focuses on the effects of environmental variables, specifically trapping location and surrounding vegetation, as well as the host variables sex, age, body weight and endoparasite infection, on the gut microbiota composition across a fine spatial scale in a freely interbreeding population. We found that differences in gut microbiota composition were significantly associated with the trapping location of the host, even across this small spatial scale. Sex of the host showed a weak association with microbiota composition. Whilst sex and location could be identified as playing an important role in the compositional variation of the gut microbiota, 75% of the variation remains unexplained. Whereas other rodent studies have found associations between gut microbiota composition and age of the host or parasite infections, the present study could not clearly establish these associations. We conclude that fine spatial scales are important when considering gut microbiota composition and investigating differences among individuals.


Assuntos
Microbioma Gastrointestinal , Camundongos/microbiologia , Animais , Ecossistema , Meio Ambiente , Feminino , Geografia , Ilhas , Masculino , Escócia
7.
J Helminthol ; 81(4): 353-60, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18005461

RESUMO

Infections with gastrointestinal (GI) nematodes are amongst the most prevalent worldwide, especially in tropical climates. Control of these infections is primarily through treatment with anthelmintic drugs, but the rapid development of resistance to all the currently available classes of anthelmintic means that alternative treatments are urgently required. Cysteine proteinases from plants such as papaya, pineapple and fig are known to be substantially effective against three rodent GI nematodes, Heligmosomoides polygyrus, Trichuris muris and Protospirura muricola, both in vitro and in vivo. Here, based on in vitro motility assays and scanning electron microscopy, we extend these earlier reports, demonstrating the potency of this anthelmintic effect of plant cysteine proteinases against two GI helminths from different taxonomic groups - the canine hookworm, Ancylostoma ceylanicum, and the rodent cestode, Rodentolepis microstoma. In the case of hookworms, a mechanism of action targeting the surface layers of the cuticle indistinguishable from that reported earlier appears to be involved, and in the case of cestodes, the surface of the tegumental layers was also the principal location of damage. Hence, plant cysteine proteinases have a broad spectrum of activity against intestinal helminths (both nematodes and cestodes), a quality that reinforces their suitability for development as a much-needed novel treatment against GI helminths of humans and livestock.


Assuntos
Anti-Helmínticos/farmacologia , Cisteína Endopeptidases/farmacologia , Helmintíase/tratamento farmacológico , Helmintos/efeitos dos fármacos , Enteropatias Parasitárias/parasitologia , Roedores/parasitologia , Análise de Variância , Ananas/enzimologia , Animais , Carica/enzimologia , Feminino , Ficus/enzimologia , Helmintíase/parasitologia , Helmintos/parasitologia , Helmintos/ultraestrutura , Enteropatias Parasitárias/tratamento farmacológico , Masculino , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...