Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 61(10): 879-894, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35486881

RESUMO

The spontaneous l-isoaspartate protein modification has been observed to negatively affect protein function. However, this modification can be reversed in many proteins in reactions initiated by the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (PCMT1). It has been hypothesized that an additional mechanism exists in which l-isoaspartate-damaged proteins are recognized and proteolytically degraded. Herein, we describe the protein-l-isoaspartate O-methyltransferase domain-containing protein 1 (PCMTD1) as a putative E3 ubiquitin ligase substrate adaptor protein. The N-terminal domain of PCMTD1 contains l-isoaspartate and S-adenosylmethionine (AdoMet) binding motifs similar to those in PCMT1. This protein also has a C-terminal domain containing suppressor of cytokine signaling (SOCS) box ubiquitin ligase recruitment motifs found in substrate receptor proteins of the Cullin-RING E3 ubiquitin ligases. We demonstrate specific PCMTD1 binding to the canonical methyltransferase cofactor S-adenosylmethionine (AdoMet). Strikingly, while PCMTD1 is able to bind AdoMet, it does not demonstrate any l-isoaspartyl methyltransferase activity under the conditions tested here. However, this protein is able to associate with the Cullin-RING proteins Elongins B and C and Cul5 in vitro and in human cells. The previously uncharacterized PCMTD1 protein may therefore provide an alternate maintenance pathway for modified proteins in mammalian cells by acting as an E3 ubiquitin ligase adaptor protein.


Assuntos
Proteínas Culina , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Proteínas Culina/química , Proteínas Culina/metabolismo , Humanos , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , S-Adenosilmetionina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas
2.
J Struct Biol ; 212(1): 107576, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32682077

RESUMO

Metabolite damage control is a critical but poorly defined aspect of cellular biochemistry, which likely involves many of the so far functionally uncharacterized protein domain (domains of unknown function; DUFs). We have determined the crystal structure of the human DUF89 protein product of the C6ORF211 gene to 1.85 Å. The crystal structure shows that the protein contains a core α-ß-α fold with an active site-bound metal ion and α-helical bundle N-terminal cap, which are both conserved features of subfamily III DUF89 domains. The biochemical activities of the human protein are conserved with those of a previously characterized budding yeast homolog, where an in vitro phosphatase activity is supported by divalent cations that include Co2+, Ni2+, Mn2+ or Mg2+. Full steady-state kinetics parameters of human DUF89 using a standard PNPP phosphatase assay revealed a six times higher catalytic efficiency in presence of Co2+ compared to Mg2+. The human enzyme targets a number of phosphate substrates similar to the budding yeast homolog, while it lacks a previously indicated methyltransferase activity. The highest activity on substrate was observed with fructose-1-phosphate, a potent glycating agent, and thus human DUF89 phosphatase activity may also play a role in limiting the buildup of phospho-glycan species and their related damaged metabolites.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Proteína O-Metiltransferase/metabolismo , Especificidade por Substrato/fisiologia , Sítios de Ligação/fisiologia , Catálise , Humanos , Cinética , Metais/metabolismo , Polissacarídeos/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/metabolismo
3.
Amino Acids ; 48(9): 2189-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27169868

RESUMO

Racemization in proteins and peptides at sites of L-asparaginyl and L-aspartyl residues contributes to their spontaneous degradation, especially in the biological aging process. Amino acid racemization involves deprotonation of the alpha carbon and replacement of the proton in the opposite stereoconfiguration; this reaction is much faster for aspartate/asparagine than for other amino acids because these residues form a succinimide ring in which resonance stabilizes the carbanion resulting from proton loss. To determine if the replacement of the hydrogen atom on the alpha carbon with a deuterium atom might decrease the rate of racemization and thus stabilize polypeptides, we synthesized a hexapeptide, VYPNGA, in which the three carbon-bound protons in the asparaginyl residue were replaced with deuterium atoms. Upon incubation of this peptide in pH 7.4 buffer at 37 °C, we found that the rate of deamidation via the succinimide intermediate was unchanged by the presence of the deuterium atoms. However, the accumulation of the D-aspartyl and D-isoaspartyl-forms resulting from racemization and hydrolysis of the succinimide was decreased more than five-fold in the deuterated peptide over a 20 day incubation at physiological temperature and pH. Additionally, we found that the succinimide intermediate arising from the degradation of the deuterated asparaginyl peptide was slightly less likely to open to the isoaspartyl configuration than was the protonated succinimide. These findings suggest that the kinetic isotope effect resulting from the presence of deuteriums in asparagine residues can limit the accumulation of at least some of the degradation products that arise as peptides and proteins age.


Assuntos
Asparagina/química , Deutério/química , Oligopeptídeos/química , Oligopeptídeos/síntese química
4.
Plant Cell ; 25(7): 2573-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23903319

RESUMO

Orthodox seeds are capable of withstanding severe dehydration. However, in the dehydrated state, Asn and Asp residues in proteins can convert to succinimide residues that can further react to predominantly form isomerized isoAsp residues upon rehydration (imbibition). IsoAsp residues can impair protein function and can render seeds nonviable, but PROTEIN ISOASPARTYL METHYLTRANSFERASE (PIMT) can initiate isoAsp conversion to Asp residues. The proteins necessary for translation upon imbibition in orthodox seeds may be particularly important to maintain in an active state. One such protein is the large, multidomain protein, Arabidopsis thaliana PLANT RNA HELICASE75 (PRH75), a DEAD-box helicase known to be susceptible to isoAsp residue accumulation. However, the consequences of such isomerization on PRH75 catalysis and for the plant are unknown. Here, it is demonstrated that PRH75 is necessary for successful seed development. It acquires isoAsp rapidly during heat stress, which eliminates RNA unwinding (but not rewinding) competence. The repair by PIMT is able to restore PRH75's complex biochemical activity provided isoAsp formation has not led to subsequent, destabilizing conformational alterations. For PRH75, an important enzymatic activity associated with translation would be eliminated unless rapidly repaired by PIMT prior to additional, deleterious conformational changes that would compromise seed vitality and germination.


Assuntos
Proteínas de Arabidopsis/metabolismo , RNA Helicases DEAD-box/metabolismo , Ácido Isoaspártico/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dicroísmo Circular , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Estabilidade Enzimática , Teste de Complementação Genética , Temperatura Alta , Humanos , Ácido Isoaspártico/genética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação , Desnaturação de Ácido Nucleico , Plantas Geneticamente Modificadas , Conformação Proteica , RNA/química , RNA/genética , RNA/metabolismo , Sementes/genética , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
J Proteome Res ; 12(10): 4566-76, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23947766

RESUMO

Protein l-isoaspartyl methyltransferase (PIMT) repairs the isoaspartyl residues (isoAsp) that originate from asparagine deamidation and aspartic acid (Asp) isomerization to Asp residues. Deletion of the gene encoding PIMT in mice (Pcmt1) leads to isoAsp accumulation in all tissues measured, especially in the brain. These PIMT-knockout (PIMT-KO) mice have perturbed glutamate metabolism and die prematurely of epileptic seizures. To elucidate the role of PIMT further, brain proteomes of PIMT-KO mice and controls were analyzed. The isoAsp levels from two of the detected 67 isoAsp sites (residue 98 from calmodulin and 68 from glyceraldehyde-3-phosphate dehydrogenase) were quantified and found to be significantly increased in PIMT-KO mice (p < 0.01). Additionally, the abundance of at least 151 out of the 1017 quantified proteins was found to be altered in PIMT-KO mouse brains. Gene ontology analysis revealed that many down-regulated proteins are involved in cellular amino acid biosynthesis. For example, the serine synthesis pathway was suppressed, possibly leading to reduced serine production in PIMT-KO mice. Additionally, the abundances of enzymes in the glutamate-glutamine cycle were altered toward the accumulation of glutamate. These findings support the involvement of PIMT in glutamate metabolism and suggest that the absence of PIMT also affects other processes involving amino acid synthesis and metabolism.


Assuntos
Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Análise de Componente Principal , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/deficiência , Proteoma/química , Proteômica
6.
PLoS One ; 7(10): e46719, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071621

RESUMO

L-isoaspartyl (D-aspartyl) O-methyltransferase deficient mice (Pcmt1(-/-)) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20-30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1(-/-) animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1(-/-) at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1(-/-) mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1-/- mice, but is not solely responsible for the early death observed in these animals.


Assuntos
Androstadienos/administração & dosagem , Insulina/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Convulsões/tratamento farmacológico , Administração Oral , Androstadienos/farmacologia , Animais , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/deficiência , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Convulsões/metabolismo , Transdução de Sinais , Wortmanina
7.
PLoS Genet ; 7(10): e1002332, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028670

RESUMO

Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.


Assuntos
Anticarcinógenos/metabolismo , Cantaridina/metabolismo , Metabolismo dos Lipídeos/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Actinas/metabolismo , Animais , Anticarcinógenos/farmacologia , Cantaridina/análogos & derivados , Cantaridina/farmacologia , Parede Celular/genética , Parede Celular/metabolismo , Besouros/química , Citoesqueleto/metabolismo , Glicerofosfolipídeos/metabolismo , Homeostase/genética , Redes e Vias Metabólicas , Metilação , Mutagênese Sítio-Dirigida , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/metabolismo , Estresse Fisiológico/genética , Biologia de Sistemas/métodos
8.
J Biol Chem ; 285(48): 37281-92, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20870712

RESUMO

The role of protein isoaspartyl methyltransferase (PIMT) in repairing a wide assortment of damaged proteins in a host of organisms has been inferred from the affinity of the enzyme for isoaspartyl residues in a plethora of amino acid contexts. The identification of PIMT target proteins in plant seeds, where the enzyme is highly active and proteome long-lived, has been hindered by large amounts of isoaspartate-containing storage proteins. Mature seed phage display libraries circumvented this problem. Inclusion of the PIMT co-substrate, S-adenosylmethionine (AdoMet), during panning permitted PIMT to retain aged phage in greater numbers than controls lacking co-substrate or when PIMT protein binding was poisoned with S-adenosyl homocysteine. After four rounds, phage titer plateaued in AdoMet-containing pans, whereas titer declined in both controls. This strategy identified 17 in-frame PIMT target proteins, including a cupin-family protein similar to those identified previously using on-blot methylation. All recovered phage had at least one susceptible Asp or Asn residue. Five targets were recovered independently. Two in-frame targets were produced in Escherichia coli as recombinant proteins and shown by on-blot methylation to acquire isoAsp, becoming a PIMT target. Both gained isoAsp rapidly in solution upon thermal insult. Mutant analysis of plants deficient in any of three in-frame PIMT targets resulted in demonstrable phenotypes. An over-representation of clones encoding proteins involved in protein production suggests that the translational apparatus comprises a subgroup for which PIMT-mediated repair is vital for orthodox seed longevity. Impaired PIMT activity would hinder protein function in these targets, possibly resulting in poor seed performance.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Biblioteca de Peptídeos , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Biblioteca Gênica , Técnicas Genéticas , Dados de Sequência Molecular , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Especificidade por Substrato
9.
Anal Chem ; 80(10): 3882-9, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18419136

RESUMO

Isoaspartate formation is a ubiquitous post-translation modification arising from spontaneous asparagine deamidation or aspartate isomerization. The formation of isoaspartate inserts a methylene group into the protein backbone, generating a "kink", and may drastically alter protein structure and function, thereby playing critical roles in a myriad of biological processes, human diseases, and protein pharmaceutical development. Herein, we report a chemo-enzymatic detection method for the isoaspartate protein, which in particular allows the affinity enrichment of isoaspartate-containing proteins. In the initial step, protein isoaspartate methyltransferase selectively converts isoaspartates into the corresponding methyl esters. Subsequently, the labile methyl ester is trapped by strong nucleophiles in aqueous solutions, such as hydrazines to form hydrazides. The stable hydrazide products can be analyzed by standard proteomic techniques, such as matrix-assisted laser desorption ionization and electrospray ionization mass spectrometry. Furthermore, the chemical trapping step allows us to introduce several tagging strategies for product identification and quantification, such as UV-vis and fluorescence detection through a dansyl derivative. Most significantly, the hydrazide product can be enriched by affinity chromatography using aldehyde resins, thus drastically reducing sample complexity. Our method hence represents the first technique for the affinity enrichment of isoaspartyl proteins and should be amendable to the systematic and comprehensive characterization of isoaspartate, particularly in complex systems.


Assuntos
Hidrazinas/química , Ácido Isoaspártico/análise , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteínas/química , Cromatografia de Afinidade , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Immunol ; 177(7): 4541-9, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16982891

RESUMO

Posttranslational protein modifications influence a number of immunologic responses ranging from intracellular signaling to protein processing and presentation. One such modification, termed isoaspartyl (isoAsp), is the spontaneous nonenzymatic modification of aspartic acid residues occurring at physiologic pH and temperature. In this study, we have examined the intracellular levels of isoAsp residues in self-proteins from MRL(+/+), MRL/lpr, and NZB/W F(1) mouse strains compared with nonautoimmune B10.BR mice. In contrast to control B10.BR or NZB/W mice, the isoAsp content in MRL autoimmune mice increased and accumulated with age in erythrocytes, brain, kidney, and T lymphocytes. Moreover, T cells that hyperproliferate to antigenic stimulation in MRL mice also have elevated intracellular isoAsp protein content. Protein l-isoaspartate O-methyltransferase activity, a repair enzyme for isoAsp residues in vivo, remains stable with age in all strains of mice. These studies demonstrate a role for the accumulation of intracellular isoAsp proteins associated with T cell proliferative defects of MRL autoimmune mice.


Assuntos
Ácido Aspártico/metabolismo , Autoimunidade , Lúpus Eritematoso Sistêmico/metabolismo , Processamento de Proteína Pós-Traducional , Linfócitos T/imunologia , Fatores Etários , Animais , Linfócitos B/metabolismo , Encéfalo/metabolismo , Proliferação de Células , Eritrócitos/metabolismo , Rim/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Teste de Cultura Mista de Linfócitos , Camundongos , Camundongos Endogâmicos MRL lpr , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/análise , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Linfócitos T/metabolismo
11.
J Biol Chem ; 281(43): 32619-29, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16923807

RESUMO

We report the use of a proteomic strategy to identify hitherto unknown substrates for mammalian protein l-isoaspartate O-methyltransferase. This methyltransferase initiates the repair of isoaspartyl residues in aged or stress-damaged proteins in vivo. Tissues from mice lacking the methyltransferase (Pcmt1(-/-)) accumulate more isoaspartyl residues than their wild-type littermates, with the most "damaged" residues arising in the brain. To identify the proteins containing these residues, brain homogenates from Pcmt1(-/-) mice were methylated by exogenous repair enzyme and the radiolabeled methyl donor S-adenosyl-[methyl-(3)H]methionine. Methylated proteins in the homogenates were resolved by both one-dimensional and two-dimensional electrophoresis, and methyltransferase substrates were identified by their increased radiolabeling when isolated from Pcmt1(-/-) animals compared with Pcmt1(+/+) littermates. Mass spectrometric analyses of these isolated brain proteins reveal for the first time that microtubule-associated protein-2, calreticulin, clathrin light chains a and b, ubiquitin carboxyl-terminal hydrolase L1, phosphatidylethanolamine-binding protein, stathmin, beta-synuclein, and alpha-synuclein, are all substrates for the l-isoaspartate methyltransferase in vivo. Our methodology for methyltransferase substrate identification was further supplemented by demonstrating that one of these methyltransferase targets, microtubule-associated protein-2, could be radiolabeled within Pcmt1(-/-) brain extracts using radioactive methyl donor and exogenous methyltransferase enzyme and then specifically immunoprecipitated with microtubule-associated protein-2 antibodies to recover co-localized protein with radioactivity. We comment on the functional significance of accumulation of relatively high levels of isoaspartate within these methyltransferase targets in the context of the histological and phenotypical changes associated with the methyltransferase knock-out mice.


Assuntos
Proteína D-Aspartato-L-Isoaspartato Metiltransferase/deficiência , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteômica , Animais , Autorradiografia , Química Encefálica , Fracionamento Celular , Metilação , Camundongos , Camundongos Knockout , Mapeamento de Peptídeos , Testes de Precipitina , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/análise , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Frações Subcelulares , Especificidade por Substrato
12.
J Biol Chem ; 281(13): 8389-98, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16443604

RESUMO

The accumulation of potentially deleterious L-isoaspartyl linkages in proteins is prevented by the action of protein L-isoaspartyl O-methyltransferase, a widely distributed enzyme that is particularly active in mammalian brain. Methyltransferase-deficient (knock-out) mice exhibit greatly increased levels of isoaspartate and typically succumb to fatal epileptic seizures at 4-10 weeks of age. The link between isoaspartate accumulation and the neurological abnormalities of these mice is poorly understood. Here, we demonstrate that synapsin I from knock-out mice contains 0.9 +/- 0.3 mol of isoaspartate/mol of synapsin, whereas the levels in wild-type and heterozygous mice are undetectable. Transgenic mice that selectively express methyltransferase only in neurons show reduced levels of synapsin damage, and the degree of reduction correlates with the phenotype of these mice. Isoaspartate levels in synapsin from the knock-out mice are five to seven times greater than those in the average protein from brain cytosol or from a synaptic vesicle-enriched fraction. The isoaspartyl sites in synapsin from knock-out mice are efficiently repaired in vitro by incubation with purified methyltransferase and S-adenosyl-L-methionine. These findings demonstrate that synapsin I is a major substrate for the isoaspartyl methyltransferase in neurons and suggest that isoaspartate-related alterations in the function of presynaptic proteins may contribute to the neurological abnormalities of mice deficient in this enzyme.


Assuntos
Encéfalo/enzimologia , Encéfalo/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/deficiência , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Sinapsinas/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Calmodulina/análise , Calmodulina/isolamento & purificação , Bovinos , Fracionamento Celular , Análise por Conglomerados , Eletroforese em Gel de Poliacrilamida , Heterozigoto , Isoenzimas/genética , Isoenzimas/metabolismo , Metilação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/análise , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/química , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Especificidade por Substrato , Sinapsinas/isolamento & purificação , Tripsina/farmacologia
13.
FEBS Lett ; 577(1-2): 181-6, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15527782

RESUMO

It has been reported that S-adenosylmethionine-dependent protein methylation in rat kidney extracts can be greatly stimulated by tyrphostin A25, a tyrosine kinase inhibitor. We have investigated the nature of this stimulation. We find that addition of tyrphostin A25, in combination with the protein phosphatase inhibitor vanadate, leads to the stimulation of methylation of polypeptides of 64, 42, 40, 36, 31, and 15 kDa in cytosolic extracts of mouse kidney. The effect of tyrphostin appears to be relatively specific for the A25 species. The enhanced methylation does not represent the activity of the families of protein histidine, lysine or arginine methyltransferases, nor that of the l-isoaspartyl/d-aspartyl methyltransferase, enzymes responsible for the bulk of protein methylation in most cell types. Chemical and enzymatic analyses of the methylated polypeptides suggest that the methyl group is in an ester linkage to the protein. In heart extracts, we find a similar situation but here the stimulation of methylation is not dependent upon vanadate and an additional 18 kDa methylated species is found. In contrast, little or no stimulation of methylation is found in brain or testis extracts. This work provides evidence for a novel type of protein carboxyl methylation reaction that may play a role in signaling reactions in certain mammalian tissues.


Assuntos
Proteínas/metabolismo , Tirfostinas/farmacologia , Vanadatos/farmacologia , Animais , Eletroforese em Gel de Poliacrilamida , Metilação , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...