Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079187

RESUMO

The increase in fluid transport due to separating cracks can lead to significant deterioration in the durability of reinforced concrete structures. Besides reinforcement and stress state, concrete mixture proportion has a significant effect on crack geometry. In this study, we investigated concrete mixtures with different aggregate size and shape, aggregate gradation, cement type and water-to-cement ratio with regard to crack geometry and resulting water permeation. Besides surface-crack width and length, we determined inner-crack width variation over depth and tortuosity by X-ray micro-computed tomography. Furthermore, we conducted permeation tests for each specimen. Among the mixture components tested, aggregates have the strongest effect on crack geometry and flow rate. Increasing aggregate size results in increasing tortuosity and decreasing flow rate. Furthermore, the replacement of round with angular aggregates results in slightly higher flow rates for a given crack width.

2.
Materials (Basel) ; 15(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36079429

RESUMO

In order to evaluate the influence of certain experimental or material-related conditions on results of the rapid chloride migration test (RCM test), statistical tests within and between samples are necessary. Thus, it needs to be clear which scatter a sample or a population of results is already subjected to without external influences due to the test method itself. So far, however, literature values for the appropriate statistical variable (coefficient of variation, CoV) explicitly valid for mortar or fine-grained concrete, e.g., for concrete repair, are missing. Therefore, we suggest a specific mortar CoV based on our own results of RCM tests performed on a cement-rich, sprayable mortar based on ordinary Portland cement. For the evaluation of external influences on a sample in comparison to a reference sample, we developed a significance criterion based on a statistical hypothesis test. The sensitivity and the reliability of this criterion is demonstrated on various results from RCM tests on mortar specimens, according to the test specifications and with deliberately chosen deviations from it. In addition, we point out the parameters included in the calculation of the rapid chloride migration coefficient that are the most sensitive to unintentional errors.

3.
Materials (Basel) ; 14(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683713

RESUMO

The Large Particle 3D Concrete Printing (LP3DCP) process presented in this paper is based on the particle bed 3D printing method; here, the integration of significantly larger particles (up to 36 mm) for selective binding using the shotcrete technique is presented. In the LP3DCP process, the integration of large particles, i.e., naturally coarse, crushed or recycled aggregates, reduces the cement volume fraction by more than 50% compared to structures conventionally printed with mortar. Hence, with LP3DCP, the global warming potential, the acidification potential and the total non-renewable primary energy of 3D printed structures can be reduced by approximately 30%. Additionally, the increased proportion of aggregates enables higher compressive strengths than without the coarse aggregates, ranging up to 65 MPa. This article presents fundamental material investigations on particle packing and matrix penetration as well as compressive strength tests and geometry studies. The results of this systematic investigation are presented, and the best set is applied to produce a large-scale demonstrator of one cubic meter of size and complex geometry. Moreover, the demonstrator features reinforcement and subtractive surface processing strategies. Further improvements of the LP3DCP technology as well as construction applications and architectural design potentials are discussed thereafter.

4.
Materials (Basel) ; 14(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466872

RESUMO

For the selective paste intrusion (SPI) method, thin layers of aggregate are locally bound by cement paste where the structure shall arise. After completion of the printing process, the structure is excavated from the particle-bed and the unbound particles are removed. However, for a sufficient layer bonding and shape accuracy, the rheology of the cement paste must be adapted to the flow resistance of the particle-bed. For practical application, that means mostly time and material consuming "trial and error" tests. To prevent that, analytical models can help to predict the penetration of the cement paste. This paper presents four analytical models to calculate the penetration depth of a cement paste into a particle packing. Based on Darcy's law, an already existing model is slightly modified (model A+) and a generalized (model C), an advanced generalized (model D) as well as a simplified model (model B/B+) are developed. Compared to conducted tests on the penetration depth, model B showed good accuracy (deviation <1.5 mm) for pastes with a yield stress ≥8.2 Pa, model A+/B+/C for ≥ 5.4 Pa and model D even for <5.4 Pa. Finally, an application guide for each model for practical use will be given.

5.
Materials (Basel) ; 13(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171778

RESUMO

The 3D printing of concrete has now entered a new era and a transformation of the construction sector is expected to reshape fabrication with concrete. This work focuses on the selective paste intrusion method, which consists of bonding dry particles of aggregate with a cement paste. This innovative technique could lead to the production of very precise component for specific applications. The main obstacle to tackle in order to reach a high shape accuracy of high mechanical performances of 3D printing elements by selectively activating the material is the control of the distribution of the cement paste through the particle bed. With the aim to better understand the path followed by the solution as it penetrates a cut-section of the granular packing, two-dimensional numerical modeling is carried out using Comsol software. A phase-field method combined with a continuous visco-plastic model has been used to study the influence of the average grain diameter, the contact angle, and the rheological properties of cement pastes on the penetration depth. We compare the numerical modeling results to existing experimental results from 3D experiments and a one-dimensional analytical model. We then highlight that the proposed numerical approach is reliable to predict the final penetration of the cement pastes.

6.
Materials (Basel) ; 13(9)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349332

RESUMO

Rheological properties of cementitious suspensions are affected not only by their mixture composition but also by process-related factors such as shear history. To enable a model-based description, investigations were carried out on the effect of shear history (shear rate variation over time) on the cement paste agglomeration state. Therefore, a Focused Beam Reflectance Measurement (FBRM) system and a wide gap rheometer were coupled to study the relation between shear history and in-situ chord length distribution simultaneously, indicating particle agglomeration. Hence, the effect of average shear rates (resulting from the applied shear profile), as well as shear rate distribution within the gap (local shear rates) on the particle agglomeration state have been investigated. The rheological properties of cement paste were evaluated with the Reiner-Riwlin approach. Furthermore, the agglomeration state of the particles was compared for different average shear rates and local shear rates at various positions of the FBRM probe. The results show that the median chord length increases in all positions when the average shear rate is decreased, indicating increasing particle agglomeration. Moreover, due to variable local shear rates at different FBRM probe positions, different agglomeration states are observed, resulting from two factors, shear rate dependent particle agglomeration and shear-induced particle migration.

7.
Materials (Basel) ; 13(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397315

RESUMO

Cementitious pastes are multiphase suspensions that are rheologically characterized by viscosity and yield stress. They tend to flocculate during rest due to attractive interparticle forces, and desagglomerate when shear is induced. The shear history, e.g., mixing energy and time, determines the apparent state of flocculation and accordingly the particle size distribution of the cement in the suspension, which itself affects suspension's plastic viscosity and yield stress. Thus, it is crucial to understand the effect of the mixing procedure of cementitious suspensions before starting rheological measurements. However, the measurement of the in-situ particle agglomeration status is difficult, due to rapidly changing particle network structuration. The focused beam reflectance measurement (FBRM) technique offers an opportunity for the in-situ investigation of the chord length distribution. This enables to detect the state of flocculation of the particles during shear. Cementitious pastes differing in their solid fraction and superplasticizer content were analyzed after various pre-shear histories, i.e., mixing times. Yield stress and viscosity were measured in a parallel-plate-rheometer and related to in-situ measurements of the chord length distribution with the FBRM-probe to characterize the agglomeration status. With increasing mixing time agglomerates were increasingly broken up in dependence of pre-shear: After 300 s of pre-shear the agglomerate sizes decreased by 10 µm to 15 µm compared to a 30 s pre-shear. At the same time dynamic yield stress and viscosity decreased up to 30% until a state of equilibrium was almost reached. The investigations show a correlation between mean chord length and the corresponding rheological parameters affected by the duration of pre-shear.

8.
Materials (Basel) ; 13(5)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121582

RESUMO

Today, the majority of research in 3D concrete printing focuses on one of the three methods: firstly, material extrusion; secondly, particle-bed binding; and thirdly, material jetting. Common to all these technologies is that the material is applied in horizontal layers. In this paper, a novel 3D concrete printing technology is presented which challenges this principle: the so-called Injection 3D Concrete Printing (I3DCP) technology is based on the concept that a fluid material (M1) is robotically injected into a material (M2) with specific rheological properties, causing material M1 to maintain a stable position within material M2. Different to the layered deposition of horizontal strands, intricate concrete structures can be created through printing spatially free trajectories, that are unconstrained by gravitational forces during printing. In this paper, three versions of this method were investigated, described, and evaluated for their potential in construction: A) injecting a fine grain concrete into a non-hardening suspension; B) injecting a non-hardening suspension into a fine grain concrete; and C) injecting a fine grain concrete with specific properties into a fine grain concrete with different properties. In an interdisciplinary research approach, various material combinations were developed and validated through physical experiments. For each of the three versions, first architectural applications were developed and functional prototypes were fabricated. These initial results confirmed both the technological and economic feasibility of the I3DCP process, and demonstrate the potential to further expand the scope of this novel technology.

9.
Materials (Basel) ; 13(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947531

RESUMO

Recently, the progress in 3D concrete printing has developed enormously. However, for the techniques available, there is still a severe lack of knowledge of the functional interaction of processing technology, concrete rheology and admixture usage. For shotcrete 3D printing technology, we present the effect of accelerator dosages (0%, 2%, 4% and 6%) on fresh concrete properties and on interlayer strength. Therefore, early yield stress development up to 90 min is measured with penetration resistance measurements. Deformation of layers under loading is investigated with digital image correlation and a mechanical testing machine. One point in time (10 min after deposition) is examined to quantify vertical buildability of elements depending on the accelerator dosage. Four different interlayer times (0, 2, 5 and 30 min), which occur for the production of small and large elements as well as due to delay during production, are investigated mechanically as well as quantitatively with computed tomography regarding the formation of cold joints. With increased accelerator dosage, an instantaneous increase in early age yield stress and yield stress evolution was observed. An increase in interlayer time leads to a reduced strength. This is mainly attributed to the observed reduced mechanical interlocking effect of the strands. Finally, a model to describe interlayer quality is presented. In the end, advantages as well as limitations of the findings are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA