Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761958

RESUMO

Previous studies have shown that inhibition of TNF family member FN14 (gene: TNFRSF12A) in colon tumors decreases inflammatory cytokine expression and mitigates cancer-induced cachexia. However, the molecular mechanisms underlying the regulation of FN14 expression remain unclear. Tumor microenvironments are often devoid of nutrients and oxygen, yet how the cachexic response relates to the tumor microenvironment and, importantly, nutrient stress is unknown. Here, we looked at the connections between metabolic stress and FN14 expression. We found that TNFRSF12A expression was transcriptionally induced during glutamine deprivation in cancer cell lines. We also show that the downstream glutaminolysis metabolite, alpha-ketoglutarate (aKG), is sufficient to rescue glutamine-deprivation-promoted TNFRSF12A induction. As aKG is a co-factor for histone de-methylase, we looked at histone methylation and found that histone H3K4me3 at the Tnfrsf12a promoter is increased under glutamine-deprived conditions and rescued via DM-aKG supplementation. Finally, expression of Tnfrsf12a and cachexia-induced weight loss can be inhibited in vivo by DM-aKG in a mouse cancer cachexia model. These findings highlight a connection between metabolic stress and cancer cachexia development.


Assuntos
Caquexia , Neoplasias do Colo , Receptor de TWEAK , Animais , Camundongos , Caquexia/genética , Caquexia/prevenção & controle , Modelos Animais de Doenças , Glutamina/farmacologia , Código das Histonas , Histona Metiltransferases , Histonas/genética , Ácidos Cetoglutáricos/farmacologia , Microambiente Tumoral , Humanos , Linhagem Celular Tumoral/metabolismo , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo
2.
EMBO Rep ; 22(8): e51910, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34232566

RESUMO

Adipose tissue plays a major role in maintaining organismal metabolic equilibrium. Control over the fate decision from mesenchymal stem cells (MSCs) to adipocyte differentiation involves coordinated command of phosphorylation. Protein phosphatase 2A plays an important role in Wnt pathway and adipocyte development, yet how PP2A complexes actively respond to adipocyte differentiation signals and acquire specificity in the face of the promiscuous activity of its catalytic subunit remains unknown. Here, we report the PP2A phosphatase B subunit B56α is specifically induced during adipocyte differentiation and mediates PP2A to dephosphorylate GSK3ß, thereby blocking Wnt activity and driving adipocyte differentiation. Using an inducible B56α knock-out mouse, we further demonstrate that B56α is essential for gonadal adipose tissue development in vivo and required for the fate decision of adipocytes over osteoblasts. Moreover, we show B56α expression is driven by the adipocyte transcription factor PPARγ thereby establishing a novel link between PPARγ signaling and Wnt blockade. Overall, our results reveal B56α is a necessary part of the machinery dictating the transition from pre-adipocyte to mature adipocyte and provide fundamental insights into how PP2A complex specifically and actively regulates unique signaling pathway in biology.


Assuntos
Células-Tronco Mesenquimais , Proteína Fosfatase 2 , Adipócitos/metabolismo , Adipogenia/genética , Animais , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
3.
Nat Cancer ; 1(3): 345-358, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32832918

RESUMO

Genetic-driven deregulation of the Wnt pathway is crucial but not sufficient for colorectal cancer (CRC) tumourigenesis. Here, we show that environmental glutamine restriction further augments Wnt signaling in APC mutant intestinal organoids to promote stemness and leads to adenocarcinoma formation in vivo via decreasing intracellular alpha-ketoglutarate (aKG) levels. aKG supplementation is sufficient to rescue low-glutamine induced stemness and Wnt hyperactivation. Mechanistically, we found that aKG promotes hypomethylation of DNA and histone H3K4me3, leading to an upregulation of differentiation-associated genes and downregulation of Wnt target genes, respectively. Using CRC patient-derived organoids and several in vivo CRC tumour models, we show that aKG supplementation suppresses Wnt signaling and promotes cellular differentiation, thereby significantly restricting tumour growth and extending survival. Together, our results reveal how metabolic microenvironment impacts Wnt signaling and identify aKG as a potent antineoplastic metabolite for potential differentiation therapy for CRC patients.


Assuntos
Neoplasias Colorretais , Via de Sinalização Wnt , Neoplasias Colorretais/tratamento farmacológico , Glutamina , Humanos , Ácidos Cetoglutáricos/farmacologia , Organoides , Microambiente Tumoral , Via de Sinalização Wnt/genética
4.
Nat Commun ; 11(1): 3326, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620791

RESUMO

Tumour cells adapt to nutrient deprivation in vivo, yet strategies targeting the nutrient poor microenvironment remain unexplored. In melanoma, tumour cells often experience low glutamine levels, which promote cell dedifferentiation. Here, we show that dietary glutamine supplementation significantly inhibits melanoma tumour growth, prolongs survival in a transgenic melanoma mouse model, and increases sensitivity to a BRAF inhibitor. Metabolomic analysis reveals that dietary uptake of glutamine effectively increases the concentration of glutamine in tumours and its downstream metabolite, αKG, without increasing biosynthetic intermediates necessary for cell proliferation. Mechanistically, we find that glutamine supplementation uniformly alters the transcriptome in tumours. Our data further demonstrate that increase in intra-tumoural αKG concentration drives hypomethylation of H3K4me3, thereby suppressing epigenetically-activated oncogenic pathways in melanoma. Therefore, our findings provide evidence that glutamine supplementation can serve as a potential dietary intervention to block melanoma tumour growth and sensitize tumours to targeted therapy via epigenetic reprogramming.


Assuntos
Proliferação de Células/efeitos dos fármacos , Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Glutamina/farmacologia , Melanoma/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Epigênese Genética/genética , Glutamina/administração & dosagem , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Melanoma/genética , Melanoma/patologia , Metilação/efeitos dos fármacos , Camundongos Nus , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Cell Rep ; 26(11): 3051-3060.e4, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30865893

RESUMO

Cancer cells heavily depend on the amino acid glutamine to meet the demands associated with growth and proliferation. Due to the rapid consumption of glutamine, cancer cells frequently undergo glutamine starvation in vivo. We and others have shown that p53 is a critical regulator in metabolic stress resistance. To better understand the molecular mechanisms by which p53 activation promotes cancer cell adaptation to glutamine deprivation, we identified p53-dependent genes that are induced upon glutamine deprivation by using RNA-seq analysis. We show that Slc7a3, an arginine transporter, is significantly induced by p53. We also show that increased intracellular arginine levels following glutamine deprivation are dependent on p53. The influx of arginine has minimal effects on known metabolic pathways upon glutamine deprivation. Instead, we found arginine serves as an effector for mTORC1 activation to promote cell growth in response to glutamine starvation. Therefore, we identify a p53-inducible gene that contributes to the metabolic stress response.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Arginina/metabolismo , Glutamina/deficiência , Neoplasias Mamárias Experimentais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Adaptação Fisiológica , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Células HEK293 , Humanos , Camundongos
6.
Nat Commun ; 10(1): 809, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30778058

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a nutrient-poor environment; however, the mechanisms by which PDAC cells undergo metabolic reprogramming to adapt to metabolic stress are still poorly understood. Here, we show that microRNA-135 is significantly increased in PDAC patient samples compared to adjacent normal tissue. Mechanistically, miR-135 accumulates specifically in response to glutamine deprivation and requires ROS-dependent activation of mutant p53, which directly promotes miR-135 expression. Functionally, we found miR-135 targets phosphofructokinase-1 (PFK1) and inhibits aerobic glycolysis, thereby promoting the utilization of glucose to support the tricarboxylic acid (TCA) cycle. Consistently, miR-135 silencing sensitizes PDAC cells to glutamine deprivation and represses tumor growth in vivo. Together, these results identify a mechanism used by PDAC cells to survive the nutrient-poor tumor microenvironment, and also provide insight regarding the role of mutant p53 and miRNA in pancreatic cancer cell adaptation to metabolic stresses.


Assuntos
Carcinoma Ductal Pancreático/genética , Glicólise/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Fosfofrutoquinase-1 Tipo C/genética , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica , Glutamina/genética , Glutamina/metabolismo , Humanos , Masculino , Camundongos Nus , MicroRNAs/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Fosfofrutoquinase-1 Tipo C/metabolismo , Estresse Fisiológico/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Oncogenesis ; 7(11): 93, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478303

RESUMO

One of the hallmarks of cancer is the ability to reprogram cellular metabolism to increase the uptake of necessary nutrients such as glucose and glutamine. Driven by oncogenes, cancer cells have increased glutamine uptake to support their highly proliferative nature. However, as cancer cells continue to replicate and grow, they lose access to vascular tissues and deplete local supply of nutrients and oxygen. We previously showed that many tumor cells situate in a low glutamine microenvironment in vivo, yet the mechanisms of how they are able to adapt to this metabolic stress are still not fully understood. Here, we report that IκB-kinase ß (IKKß) is needed to promote survival and its activation is accompanied by phosphorylation of the metabolic sensor, p53, in response to glutamine deprivation. Knockdown of IKKß decreases the level of wild-type and mutant p53 phosphorylation and its transcriptional activity, indicating a novel relationship between IKKß and p53 in mediating cancer cell survival in response to glutamine withdrawal. Phosphopeptide mass spectrometry analysis further reveals that IKKß phosphorylates p53 on Ser392 to facilitate its activation upon glutamine deprivation, independent of the NF-κB pathway. The results of this study offer an insight into the metabolic reprogramming in cancer cells that is dependent on a previously unidentified IKKß-p53 signaling axis in response to glutamine depletion. More importantly, this study highlights a new therapeutic strategy for cancer treatment and advances our understanding of adaptive mechanisms that could lead to resistance to current glutamine targeting therapies.

8.
PLoS Biol ; 15(11): e2002810, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107960

RESUMO

Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.


Assuntos
Enzimas AlkB/antagonistas & inibidores , Antineoplásicos Alquilantes/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glutaminase/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Alquilação/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Glutaminase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 23(15): 4004-4009, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404599

RESUMO

Epigenetic alterations contribute to tumor development, progression, and therapeutic response. Many epigenetic enzymes use metabolic intermediates as cofactors to modify chromatin structure. Emerging evidence suggests that fluctuation in metabolite levels may regulate activities of these chromatin-modifying enzymes. Here, we summarize recent progress in understanding the cross-talk between metabolism and epigenetic control of gene expression in cancer. We focus on how metabolic changes, due to diet, genetic mutations, or tumor microenvironment, regulate histone methylation status and, consequently, affect gene expression profiles to promote tumorigenesis. Importantly, we also suggest some potential therapeutic approaches to target the oncogenic role of metabolic alterations and epigenetic modifications in cancer. Clin Cancer Res; 23(15); 4004-9. ©2017 AACR.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Histonas/genética , Neoplasias/genética , Acetilação , Transformação Celular Neoplásica/genética , Cromatina/genética , Histonas/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metilação , Neoplasias/patologia
10.
Nat Cell Biol ; 18(10): 1090-101, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27617932

RESUMO

Poorly organized tumour vasculature often results in areas of limited nutrient supply and hypoxia. Despite our understanding of solid tumour responses to hypoxia, how nutrient deprivation regionally affects tumour growth and therapeutic response is poorly understood. Here, we show that the core region of solid tumours displayed glutamine deficiency compared with other amino acids. Low glutamine in tumour core regions led to dramatic histone hypermethylation due to decreased α-ketoglutarate levels, a key cofactor for the Jumonji-domain-containing histone demethylases. Using patient-derived (V600E)BRAF melanoma cells, we found that low-glutamine-induced histone hypermethylation resulted in cancer cell dedifferentiation and resistance to BRAF inhibitor treatment, which was largely mediated by methylation on H3K27, as knockdown of the H3K27-specific demethylase KDM6B and the methyltransferase EZH2 respectively reproduced and attenuated the low-glutamine effects in vitro and in vivo. Thus, intratumoral regional variation in the nutritional microenvironment contributes to tumour heterogeneity and therapeutic response.


Assuntos
Metilação de DNA/fisiologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Metiltransferases/metabolismo , Neoplasias/metabolismo , Animais , Glutamina/deficiência , Glutamina/metabolismo , Histonas/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Metilação
11.
Genes Dev ; 30(16): 1837-51, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27585591

RESUMO

Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase ß (IKKß) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKß directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKß-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKß and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKß in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability.


Assuntos
Glutamina/metabolismo , Quinase I-kappa B/metabolismo , Fosfofrutoquinase-2/metabolismo , Adaptação Fisiológica/genética , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Glicólise/genética , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Células MCF-7 , Camundongos , NF-kappa B/metabolismo , Fosforilação
12.
PLoS One ; 10(12): e0145938, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26717153

RESUMO

Despite advances in our understanding of protein kinase regulation in the DNA damage response, the mechanism that controls protein phosphatase activity in this pathway is unclear. Unlike kinases, the activity and specificity of serine/threonine phosphatases is governed largely by their associated proteins. Here we show that Tip41-like protein (TIPRL), an evolutionarily conserved binding protein for PP2A-family phosphatases, is a negative regulator of protein phosphatase 4 (PP4). Knockdown of TIPRL resulted in increased PP4 phosphatase activity and formation of the active PP4-C/PP4R2 complex known to dephosphorylate γ-H2AX. Thus, overexpression of TIPRL promotes phosphorylation of H2AX, and increases γ-H2AX positive foci in response to DNA damage, whereas knockdown of TIPRL inhibits γ-H2AX phosphorylation. In correlation with γ-H2AX levels, we found that TIPRL overexpression promotes cell death in response to genotoxic stress, and knockdown of TIPRL protects cells from genotoxic agents. Taken together, these data demonstrate that TIPRL inhibits PP4 activity to allow for H2AX phosphorylation and the subsequent DNA damage response.


Assuntos
Dano ao DNA , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Células 3T3 , Animais , Morte Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Fosfoproteínas Fosfatases/metabolismo , Fosforilação
13.
J Transl Med ; 13: 210, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26139106

RESUMO

BACKGROUND: (V600) BRAF mutations drive approximately 50% of metastatic melanoma which can be therapeutically targeted by BRAF inhibitors (BRAFi) and, based on resistance mechanisms, the combination of BRAF and MEK inhibitors (BRAFi + MEKi). Although the combination therapy has been shown to provide superior clinical benefits, acquired resistance is still prevalent and limits the overall survival benefits. Recent work has shown that oncogenic changes can lead to alterations in tumor cell metabolism rendering cells addicted to nutrients, such as the amino acid glutamine. Here, we evaluated whether melanoma cells with acquired resistance display glutamine dependence and whether glutamine metabolism can be a potential molecular target to treat resistant cells. METHODS: Isogenic BRAFi sensitive parental (V600) BRAF mutant melanoma cell lines and resistant (derived by chronic treatment with vemurafenib) sub-lines were used to assess differences in the glutamine uptake and sensitivity to glutamine deprivation. To evaluate a broader range of resistance mechanisms, isogenic pairs where the sub-lines were resistant to BRAFi + MEKi were also studied. Since resistant cells demonstrated increased sensitivity to glutamine deficiency, we used glutaminase inhibitors BPTES [bis-2-(5 phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide] and L-L-DON (6-Diazo-5-oxo-L-norleucine) to treat MAPK pathway inhibitor (MAPKi) resistant cell populations both in vitro and in vivo. RESULTS: We demonstrated that MAPKi-acquired resistant cells uptook greater amounts of glutamine and have increased sensitivity to glutamine deprivation than their MAPKi-sensitive counterparts. In addition, it was found that both BPTES and L-DON were more effective at decreasing cell survival of MAPKi-resistant sub-lines than parental cell populations in vitro. We also showed that mutant NRAS was critical for glutamine addiction in mutant NRAS driven resistance. When tested in vivo, we found that xenografts derived from resistant cells were more sensitive to BPTES or L-DON treatment than those derived from parental cells. CONCLUSION: Our study is a proof-of-concept for the potential of targeting glutamine metabolism as an alternative strategy to suppress acquired MAPKi-resistance in melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutamina/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Humanos , Melanoma/patologia , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Vemurafenib
14.
ACS Chem Biol ; 8(2): 327-35, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23102022

RESUMO

Multidrug resistance (MDR) is a major hurdle in the treatment of cancer, and there is a pressing need for new therapies. We have recently developed ethyl 2-amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017), derived from a dual inhibitor of Bcl-2 and SERCA proteins, sHA 14-1, with selective cytotoxicity toward MDR cancer cell lines in vitro. In this study, we present new evidence for its therapeutic potential in treatment of MDR cancers and offer mechanistic insights toward its preferential targeting of drug-resistant cancer. CXL017 selectively suppressed the growth of tumors derived from the MDR cancer cell line, HL60/MX2, in vivo. In addition, even after chronic exposure to CXL017, HL60/MX2 failed to develop stable resistance to CXL017, whereas it acquired >2000-fold resistance to cytarabine (Ara-C), the major first-line chemotherapy for the treatment of acute myeloid leukemia (AML). Remarkably, instead of acquiring further cross-resistance, HL60/MX2 cells exposed to CXL017 were resensitized to standard therapies (10- to 100-fold). Western blotting analyses revealed that CXL017 exposure significantly down-regulated Mcl-1 and Bax and up-regulated Noxa, Bim, Bcl-X(L), SERCA2, and SERCA3 proteins, along with a reduction in endoplasmic reticulum (ER) calcium content. Given the well-established functions of Bcl-2 family proteins and ER calcium in drug resistance, our results suggest that the down-regulation of Mcl-1 and the up-regulation of Noxa and Bim along with the decrease in ER calcium content are likely responsible for CXL017-induced resensitization of MDR cancer cells. These data also demonstrate the unique potential of CXL017 to overcome MDR in cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzopiranos/farmacologia , Citarabina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzopiranos/química , Sobrevivência Celular/efeitos dos fármacos , Citarabina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Leucemia Mieloide Aguda/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
Mol Cell ; 40(5): 823-33, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145489

RESUMO

The BH3-only protein, Noxa, is induced in response to apoptotic stimuli, such as DNA damage, hypoxia, and proteasome inhibition in most human cells. Noxa is constitutively expressed in proliferating cells of hematopoietic lineage and required for apoptosis in response to glucose stress. We show that Noxa is phosphorylated on a serine residue (S(13)) in the presence of glucose. Phosphorylation promotes its cytosolic sequestration and suppresses its apoptotic function. We identify Cdk5 as the Noxa kinase and show that Cdk5 knockdown or expression of a Noxa S(13) to A mutant increases sensitivity to glucose starvation, confirming that the phosphorylation is protective. Both glucose deprivation and Cdk5 inhibition promote apoptosis by dephosphorylating Noxa. Paradoxically, Noxa stimulates glucose consumption and may enhance glucose turnover via the pentose phosphate pathway rather than through glycolysis. We propose that Noxa plays both growth-promoting and proapoptotic roles in hematopoietic cancers with phospho-S(13) as the glucose-sensitive toggle switch controlling these opposing functions.


Assuntos
Apoptose/fisiologia , Quinase 5 Dependente de Ciclina/metabolismo , Glucose/metabolismo , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral , Quinase 5 Dependente de Ciclina/genética , Humanos , Leucemia/enzimologia , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-2/genética
16.
Intensive Care Med ; 35(2): 306-13, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18795255

RESUMO

OBJECTIVE: Noninvasive ventilation with pressure support (NIV-PS) therapy can augment ventilation; however, such therapy is fixed and may not adapt to varied patient needs. We tested the hypothesis that in patients with chronic respiratory insufficiency, a newer mode of ventilation [averaged volume assured pressure support (AVAPS)] and lateral decubitus position were associated with better sleep efficiency than NIV-PS and supine position. Our secondary aim was to assess the effect of mode of ventilation, body position, and sleep-wakefulness state on minute ventilation (V(E)) in the same patients. DESIGN: Single-blind, randomized, cross-over, prospective study. SETTING: Academic institution. PATIENTS AND PARTICIPANTS: Twenty-eight patients. INTERVENTIONS: NIV-PS or AVAPS therapy. MEASUREMENTS AND RESULTS: Three sleep studies were performed in each patient; prescription validation night, AVAPS or NIV-PS, and crossover to alternate mode. Sleep was not different between AVAPS and NIV-PS. Supine body position was associated with worse sleep efficiency than lateral decubitus position (77.9 +/- 22.9 and 85.2 +/- 10.5%; P = 0.04). V(E) was lower during stage 2 NREM and REM sleep than during wakefulness (P < 0.0001); was lower during NIV-PS than AVAPS (P = 0.029); tended to be lower with greater body mass index (P = 0.07), but was not influenced by body position. CONCLUSIONS: In patients with chronic respiratory insufficiency, supine position was associated with worse sleep efficiency than the lateral decubitus position. AVAPS was comparable to NIV-PS therapy with regard to sleep, but statistically greater V(E) during AVAPS than NIV-PS of unclear significance was observed. V(E) was determined by sleep-wakefulness state, body mass index, and mode of therapy.


Assuntos
Respiração com Pressão Positiva/métodos , Insuficiência Respiratória/terapia , Sono , Índice de Massa Corporal , Doença Crônica , Estudos Cross-Over , Feminino , Humanos , Hipoventilação/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Polissonografia , Insuficiência Respiratória/epidemiologia , Ronco/diagnóstico , Ronco/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...