Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Nutr ; 122(12): 1359-1367, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31554524

RESUMO

Subcutaneous adipose tissue (scAT) and peripheral blood mononuclear cells (PBMC) play a significant role in obesity-associated systemic low-grade inflammation. High-fat diet (HFD) is known to induce inflammatory changes in both scAT and PBMC. However, the time course of the effect of HFD on these systems is still unknown. The aim of the present study was to determine the time course of the effect of HFD on PBMC and scAT. New Zealand white rabbits were fed HFD for 5 or 10 weeks (i.e. HFD-5 and HFD-10) or regular chow (i.e. control (CNT)-5 and CNT-10). Thereafter, metabolic and inflammatory parameters of PBMC and scAT were quantified. HFD induced hyperfattyacidaemia in HFD-5 and HFD-10 groups, with the development of insulin resistance in HFD-10, while no changes were observed in scAT lipid metabolism and inflammatory status. HFD activated the inflammatory pathways in PBMC of HFD-5 group and induced modified autophagy in that of HFD-10. The rate of fat oxidation in PBMC was directly associated with the expression of inflammatory markers and tended to inversely associate with autophagosome formation markers in PBMC. HFD affected systemic substrate metabolism, and the metabolic, inflammatory and autophagy pathways in PBMC in the absence of metabolic and inflammatory changes in scAT. Dietary approaches or interventions to avert HFD-induced changes in PBMC could be essential to prevent metabolic and inflammatory complications of obesity and promote healthier living.


Assuntos
Dieta Hiperlipídica , Leucócitos Mononucleares/metabolismo , Gordura Subcutânea/metabolismo , Aumento de Peso , Animais , Autofagia , Carnitina/análogos & derivados , Carnitina/metabolismo , Homeostase , Inflamação , Insulina/sangue , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Obesidade , Coelhos
2.
J Wildl Dis ; 50(1): 11-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24171573

RESUMO

Brucellosis, which results in fetal abortions in domestic and wildlife animal populations, is of major concern in the US and throughout much of the world. The disease, caused by Brucella abortus, poses an economic threat to agriculture-based communities. A moderately efficacious live attenuated vaccine (B. abortus strain RB51) exists. However, even with vaccine use, outbreaks occur. Evidence suggests that elk (Cervus canadensis), a wild host reservoir, are the source of recent outbreaks in domestic cattle herds in Wyoming, USA. Brucella abortus establishes a chronic, persistent infection in elk. The molecular mechanisms allowing the establishment of this persistent infective state are currently unknown. A potential mechanism could be that concurrent pathogen burdens contribute to persistence. In Wyoming, elk are chronically infected with Trypanosoma cervi, which may modulate host responses in a similar manner to that documented for other trypanosomes. To identify any synergistic relationship between the two pathogens, we simulated coinfection in the well-established murine brucellosis model using Trypanosoma musculi and B. abortus S19. Groups of C57BL/6 mice (Mus musculus) were infected with either B. abortus strain 19 (S19) or T. musculi or both. Sera were collected weekly; spleens from euthanized mice were tested to determine bacterial load near the end of normal brucellosis infection. Although changes in bacterial load were observed during the later stages of brucellosis in those mice coinfected with T. musculi, the most significant finding was the suppression of gamma interferon early during the infection along with an increase in interleukin-10 secretion compared with mice infected with either pathogen alone. These results suggest that immune modulatory events occur in the mouse during coinfection and that further experiments are warranted to determine if T. cervi impacts Brucella infection in elk.


Assuntos
Brucella abortus/crescimento & desenvolvimento , Cervos , Camundongos Endogâmicos C57BL/parasitologia , Trypanosoma/fisiologia , Animais , Brucella abortus/imunologia , Coinfecção , Cervos/microbiologia , Cervos/parasitologia , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/parasitologia , Reservatórios de Doenças/veterinária , Imunomodulação , Interferon gama/biossíntese , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL/microbiologia , Testes de Sensibilidade Microbiana/veterinária , Trypanosoma/imunologia
3.
PLoS One ; 6(3): e17425, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21412420

RESUMO

Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 104 CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of protective immunity.


Assuntos
Antígenos de Bactérias/imunologia , Carga Bacteriana/imunologia , Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Animais , Brucelose/genética , Brucelose/microbiologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Interferon gama/imunologia , Cinética , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...