Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 200(2): 369-381, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38676573

RESUMO

Drug-induced liver injury (DILI) represents a major issue for pharmaceutical companies, being a potential cause of black-box warnings on marketed pharmaceuticals, or drug withdrawal from the market. Lipid accumulation in the liver also referred to as steatosis, may be secondary to impaired mitochondrial fatty acid oxidation (mtFAO). However, an overall causal relationship between drug-induced mtFAO inhibition and the occurrence of steatosis in patients has not yet been established with a high number of pharmaceuticals. Hence, 32 steatogenic and 13 nonsteatogenic drugs were tested for their ability to inhibit mtFAO in isolated mouse liver mitochondria. To this end, mitochondrial respiration was measured with palmitoyl-l-carnitine, palmitoyl-CoA + l-carnitine, or octanoyl- l-carnitine. This mtFAO tri-parametric assay was able to predict the occurrence of steatosis in patients with a sensitivity and positive predictive value above 88%. To get further information regarding the mechanism of drug-induced mtFAO impairment, mitochondrial respiration was also measured with malate/glutamate or succinate. Drugs such as diclofenac, methotrexate, and troglitazone could inhibit mtFAO secondary to an impairment of the mitochondrial respiratory chain, whereas dexamethasone, olanzapine, and zidovudine appeared to impair mtFAO directly. Mitochondrial swelling, transmembrane potential, and production of reactive oxygen species were also assessed for all compounds. Only the steatogenic drugs amiodarone, ketoconazole, lovastatin, and toremifene altered all these 3 mitochondrial parameters. In conclusion, our tri-parametric mtFAO assay could be useful in predicting the occurrence of steatosis in patients. The combination of this assay with other mitochondrial parameters could also help to better understand the mechanism of drug-induced mtFAO inhibition.


Assuntos
Ácidos Graxos , Fígado Gorduroso , Mitocôndrias Hepáticas , Oxirredução , Animais , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Preparações Farmacêuticas/metabolismo
2.
Cell Biol Toxicol ; 37(2): 151-175, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32535746

RESUMO

Steatosis is a liver lesion reported with numerous pharmaceuticals. Prior studies showed that severe impairment of mitochondrial fatty acid oxidation (mtFAO) constantly leads to lipid accretion in liver. However, much less is known about the mechanism(s) of drug-induced steatosis in the absence of severe mitochondrial dysfunction, although previous studies suggested the involvement of mild-to-moderate inhibition of mtFAO, increased de novo lipogenesis (DNL), and impairment of very low-density lipoprotein (VLDL) secretion. The objective of our study, mainly carried out in human hepatoma HepaRG cells, was to investigate these 3 mechanisms with 12 drugs able to induce steatosis in human: amiodarone (AMIO, used as positive control), allopurinol (ALLO), D-penicillamine (DPEN), 5-fluorouracil (5FU), indinavir (INDI), indomethacin (INDO), methimazole (METHI), methotrexate (METHO), nifedipine (NIF), rifampicin (RIF), sulindac (SUL), and troglitazone (TRO). Hepatic cells were exposed to drugs for 4 days with concentrations decreasing ATP level by less than 30% as compared to control and not exceeding 100 × Cmax. Among the 12 drugs, AMIO, ALLO, 5FU, INDI, INDO, METHO, RIF, SUL, and TRO induced steatosis in HepaRG cells. AMIO, INDO, and RIF decreased mtFAO. AMIO, INDO, and SUL enhanced DNL. ALLO, 5FU, INDI, INDO, SUL, RIF, and TRO impaired VLDL secretion. These seven drugs reduced the mRNA level of genes playing a major role in VLDL assembly and also induced endoplasmic reticulum (ER) stress. Thus, in the absence of severe mitochondrial dysfunction, drug-induced steatosis can be triggered by different mechanisms, although impairment of VLDL secretion seems more frequently involved, possibly as a consequence of ER stress.


Assuntos
Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Mitocôndrias Hepáticas/metabolismo , Testes de Toxicidade , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Lipoproteínas VLDL/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia
3.
Zebrafish ; 17(4): 268-270, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32364833

RESUMO

In all animal species, oxygen consumption is a key process that is partially impaired in a large number of pathological situations and thus provides informative details on the physiopathology of the disease. In this study, we describe a simple and affordable method to precisely measure oxygen consumption in living zebrafish larvae using a spectrofluorometer and the MitoXpress Xtra Oxygen Consumption Assay. In addition, we used zebrafish larvae treated with mitochondrial respiratory chain inhibitors, antimycin A or rotenone, to verify that our method enables precise and reliable measurements of oxygen consumption.


Assuntos
Antimicina A/farmacologia , Embrião não Mamífero/metabolismo , Consumo de Oxigênio , Rotenona/farmacologia , Peixe-Zebra/metabolismo , Animais , Larva/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
4.
BMC Biol ; 14: 69, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27538435

RESUMO

BACKGROUND: After viral infection and the stimulation of some pattern-recognition receptors, TANK-binding kinase I (TBK1) is activated by K63-linked polyubiquitination followed by trans-autophosphorylation. While the activated TBK1 induces type I interferon production by phosphorylating the transcription factor IRF3, the precise molecular mechanisms underlying TBK1 activation remain unclear. RESULTS: We report here the localization of the ubiquitinated and phosphorylated active form of TBK1 to the Golgi apparatus after the stimulation of RIG-I-like receptors (RLRs) or Toll-like receptor-3 (TLR3), due to TBK1 K63-linked ubiquitination on lysine residues 30 and 401. The ubiquitin-binding protein optineurin (OPTN) recruits ubiquitinated TBK1 to the Golgi apparatus, leading to the formation of complexes in which TBK1 is activated by trans-autophosphorylation. Indeed, OPTN deficiency in various cell lines and primary cells impairs TBK1 targeting to the Golgi apparatus and its activation following RLR or TLR3 stimulation. Interestingly, the Bluetongue virus NS3 protein binds OPTN at the Golgi apparatus, neutralizing its activity and thereby decreasing TBK1 activation and downstream signaling. CONCLUSIONS: Our results highlight an unexpected role of the Golgi apparatus in innate immunity as a key subcellular gateway for TBK1 activation after RNA virus infection.


Assuntos
Complexo de Golgi/virologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Vírus de RNA/imunologia , Proteínas de Ciclo Celular , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana Transportadoras , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA , Receptores Imunológicos , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo , Transfecção , Ubiquitinação , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA