Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 751: 109825, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992885

RESUMO

Extracellular signal-regulated kinase 3 (ERK3 also designated MAPK6 - mitogen-activated protein kinase 6) is a ubiquitously expressed kinase participating in the regulation of a broad spectrum of physiological and pathological processes. Targeted inhibition of the kinase may allow the development of novel treatment strategies for a variety of types of cancer and somatic pathologies, as well as preserving metabolic health, combat obesity and diabetes. We chose and synthesized three triazolo [4,5-d]pyrimidin-5-amines proposed previously as putative ERK3 inhibitors to assess their selectivity and biological effects in terms of metabolic state impact in living cells. As it was previously shown that ERK3 is a major regulator of lipolysis in adipocytes, we focused on this process. Our new results indicate that in addition to the previously identified lipolytic enzyme ATGL, ERK3 also regulates hormone-sensitive lipase (HSL) and monoglyceride lipase (MGL). Moreover, this kinase also promotes the abundance of fatty acid synthase (FASN) as well as protein kinase cAMP-activated catalytic subunit alpha (PKACα). To investigate various effects of putative ERK3 inhibitors on lipolysis, we utilized different adipocyte models. We demonstrated that molecules exhibit lipolysis-modulating effects; however, the effects of triazolo [4,5-d]pyrimidin-5-amines based inhibitors on lipolysis are not dependent on ERK3. Subsequently, we revealed a wide range of the compounds' possible targets using a machine learning-based prediction. Therefore, the tested compounds inhibit ERK3 in vitro, but the biological effect of this inhibition is significantly overlapped and modified by some other molecular events related to the non-selective binding to other targets.


Assuntos
Adipócitos , Lipólise
2.
EMBO Mol Med ; 15(9): e16858, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37490001

RESUMO

Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic ß cells are the central regulators of systemic glucose homeostasis. Here, we show that factor(s) derived from ß cells stimulate platelet activity and platelets selectively localize to the vascular endothelium of pancreatic islets. Both depletion of platelets and ablation of major platelet adhesion or activation pathways consistently resulted in impaired glucose tolerance and decreased circulating insulin levels. Furthermore, we found platelet-derived lipid classes to promote insulin secretion and identified 20-Hydroxyeicosatetraenoic acid (20-HETE) as the main factor promoting ß cells function. Finally, we demonstrate that the levels of platelet-derived 20-HETE decline with age and that this parallels with reduced impact of platelets on ß cell function. Our findings identify an unexpected function of platelets in the regulation of insulin secretion and glucose metabolism, which promotes metabolic fitness in young individuals.


Assuntos
Células Secretoras de Insulina , Humanos , Secreção de Insulina , Insulina/metabolismo , Plaquetas , Glucose/metabolismo
3.
Biochem Biophys Res Commun ; 612: 119-125, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35523049

RESUMO

Kinases represent one of the largest druggable families of proteins. Importantly, many kinases are aberrantly activated/de-activated in multiple organs during obesity, which contributes to the development of diabetes and associated diseases. Previous results indicate that the complex between Extracellular-regulated kinase 3 (ERK3) and Mitogen-Activated Protein Kinase (MAPK)-activated protein kinase 5 (MK5) suppresses energy dissipation and promotes fatty acids (FAs) output in adipose tissue and, therefore promotes obesity and diabetes. However, the therapeutic potential of targeting this complex at the systemic level has not been fully explored. Here we applied a translational approach to target the ERK3/MK5 complex in mice. Importantly, deletion of ERK3 in the whole body or administration of MK5-specific inhibitor protects against obesity and promotes insulin sensitivity. Finally, we show that the expression of ERK3 and MK5 correlates with the degree of obesity and that ERK3/MK5 complex regulates energy dissipation in human adipocytes. Altogether, we demonstrate that ERK3/MK5 complex can be targeted in vivo to preserve metabolic health and combat obesity and diabetes.


Assuntos
Diabetes Mellitus , Proteínas Serina-Treonina Quinases , Animais , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Obesidade
4.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34145024

RESUMO

Members of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet. However, its substrates are largely unknown. Here we applied proteomic approaches to determine PKD3 targets. We identified more than 300 putative targets of PKD3. Furthermore, biochemical analysis revealed that PKD3 regulates cAMP-dependent PKA activity, a master regulator of the hepatic response to glucagon and fasting. PKA regulates glucose, lipid, and amino acid metabolism in the liver, by targeting key enzymes in the respective processes. Among them the PKA targets phenylalanine hydroxylase (PAH) catalyzes the conversion of phenylalanine to tyrosine. Consistently, we showed that PKD3 is activated by glucagon and promotes glucose and tyrosine levels in hepatocytes. Therefore, our data indicate that PKD3 might play a role in the hepatic response to glucagon.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucagon/farmacologia , Hepatócitos/citologia , Proteína Quinase C/metabolismo , Proteômica/métodos , Animais , Células Cultivadas , Jejum , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Camundongos , Fenilalanina Hidroxilase/metabolismo , Fosforilação , Cultura Primária de Células , Mapas de Interação de Proteínas , Tirosina/metabolismo
5.
EMBO Mol Med ; 13(5): e13548, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33949105

RESUMO

Lipids are the most energy-dense components of the diet, and their overconsumption promotes obesity and diabetes. Dietary fat content has been linked to the lipid processing activity by the intestine and its overall capacity to absorb triglycerides (TG). However, the signaling cascades driving intestinal lipid absorption in response to elevated dietary fat are largely unknown. Here, we describe an unexpected role of the protein kinase D2 (PKD2) in lipid homeostasis. We demonstrate that PKD2 activity promotes chylomicron-mediated TG transfer in enterocytes. PKD2 increases chylomicron size to enhance the TG secretion on the basolateral side of the mouse and human enterocytes, which is associated with decreased abundance of APOA4. PKD2 activation in intestine also correlates positively with circulating TG in obese human patients. Importantly, deletion, inactivation, or inhibition of PKD2 ameliorates high-fat diet-induced obesity and diabetes and improves gut microbiota profile in mice. Taken together, our findings suggest that PKD2 represents a key signaling node promoting dietary fat absorption and may serve as an attractive target for the treatment of obesity.


Assuntos
Quilomícrons , Metabolismo dos Lipídeos , Animais , Quilomícrons/metabolismo , Humanos , Intestinos , Camundongos , Obesidade , Proteína Quinase D2 , Proteínas Quinases , Triglicerídeos
6.
Lipids Health Dis ; 19(1): 113, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466765

RESUMO

Protein kinase C (PKC) and Protein kinase D (PKD) isoforms can sense diacylglycerol (DAG) generated in the different cellular compartments in various physiological processes. DAG accumulates in multiple organs of the obese subjects, which leads to the disruption of metabolic homeostasis and the development of diabetes as well as associated diseases. Multiple studies proved that aberrant activation of PKCs and PKDs contributes to the development of metabolic diseases. DAG-sensing PKC and PKD isoforms play a crucial role in the regulation of metabolic homeostasis and therefore might serve as targets for the treatment of metabolic disorders such as obesity and diabetes.


Assuntos
Diglicerídeos/metabolismo , Glucose/metabolismo , Metabolismo dos Lipídeos , Proteína Quinase C/metabolismo , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Humanos , Insulina/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Transdução de Sinais
7.
Sci Signal ; 12(593)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387939

RESUMO

Hepatic activation of protein kinase C (PKC) isoforms by diacylglycerol (DAG) promotes insulin resistance and contributes to the development of type 2 diabetes (T2D). The closely related protein kinase D (PKD) isoforms act as effectors for DAG and PKC. Here, we showed that PKD3 was the predominant PKD isoform expressed in hepatocytes and was activated by lipid overload. PKD3 suppressed the activity of downstream insulin effectors including the kinase AKT and mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2). Hepatic deletion of PKD3 in mice improved insulin-induced glucose tolerance. However, increased insulin signaling in the absence of PKD3 promoted lipogenesis mediated by SREBP (sterol regulatory element-binding protein) and consequently increased triglyceride and cholesterol content in the livers of PKD3-deficient mice fed a high-fat diet. Conversely, hepatic-specific overexpression of a constitutively active PKD3 mutant suppressed insulin-induced signaling and caused insulin resistance. Our results indicate that PKD3 provides feedback on hepatic lipid production and suppresses insulin signaling. Therefore, manipulation of PKD3 activity could be used to decrease hepatic lipid content or improve hepatic insulin sensitivity.


Assuntos
Colesterol/biossíntese , Hepatócitos/metabolismo , Insulina/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais , Triglicerídeos/biossíntese , Animais , Colesterol/genética , Insulina/genética , Lipogênese/genética , Camundongos , Camundongos Transgênicos , Proteína Quinase C/genética , Triglicerídeos/genética
8.
EMBO J ; 37(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30389661

RESUMO

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Assuntos
Adipócitos/metabolismo , Adiposidade , Metabolismo Energético , Fígado Gorduroso/metabolismo , Obesidade/metabolismo , Proteína Quinase C/metabolismo , Gordura Subcutânea/metabolismo , Células 3T3-L1 , Adipócitos/patologia , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Obesidade/genética , Obesidade/patologia , Proteína Quinase C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas do Segundo Mensageiro/genética , Gordura Subcutânea/fisiologia
9.
J Lipid Res ; 58(8): 1661-1669, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600283

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that targets LDL receptors (LDLRs) for degradation in liver. Blocking the interaction of PCSK9 with the LDLR potently reduces plasma LDL cholesterol levels and cardiovascular events. Recently, it has been suggested that inhibition of PCSK9 might also improve outcomes in mice and humans with sepsis, possibly by increasing LDLR-mediated clearance of endotoxins. Sepsis is a complication of a severe microbial infection that has shared pathways with lipid metabolism. Here, we tested whether anti-PCSK9 antibodies prevent death from lipopolysaccharide (LPS)-induced endotoxemia. Mice were administered PCSK9 antibodies prior to, or shortly after, injecting LPS. In both scenarios, the administration of PCSK9 antibodies did not alter endotoxemia-induced mortality. Afterward, we determined whether the complete absence of PCSK9 improved endotoxemia-induced mortality in mice with the germ-line deletion of Pcsk9 Similarly, PCSK9 knockout mice were not protected from LPS-induced death. To determine whether low LDLR expression increased LPS-induced mortality, Ldlr-/- mice and PCSK9 transgenic mice were studied after injection of LPS. Endotoxemia-induced mortality was not altered in either mouse model. In a human cohort, we observed no correlation between plasma inflammation markers with total cholesterol levels, LDL cholesterol, and PCSK9. Combined, our data demonstrate that PCSK9 inhibition provides no protection from LPS-induced mortality in mice.


Assuntos
Lipopolissacarídeos/farmacologia , Inibidores de PCSK9 , Inibidores de Proteases/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , LDL-Colesterol/sangue , Estudos de Coortes , Humanos , Camundongos , Análise de Sobrevida
10.
Endocrinology ; 158(5): 1231-1251, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323980

RESUMO

Triglycerides are stored in specialized organelles called lipid droplets. Numerous proteins have been shown to be physically associated with lipid droplets and govern their function. Previously, the protein hypoxia-inducible lipid droplet-associated (HILPDA) was localized to lipid droplets and was suggested to inhibit triglyceride lipolysis in hepatocytes. We confirm the partial localization of HILPDA to lipid droplets and show that HILPDA is highly abundant in adipose tissue, where its expression is controlled by the peroxisome proliferator-activated receptor γ and by ß-adrenergic stimulation. Levels of HILPDA markedly increased during 3T3-L1 adipocyte differentiation. Nevertheless, silencing of Hilpda using small interfering RNA or overexpression of Hilpda using adenovirus did not show a clear impact on 3T3-L1 adipogenesis. Following ß-adrenergic stimulation, the silencing of Hilpda in adipocytes did not significantly alter the release of nonesterified fatty acids (NEFA) and glycerol. By contrast, adenoviral-mediated overexpression of Hilpda modestly attenuated the release of NEFA from adipocytes following ß-adrenergic stimulation. In mice, adipocyte-specific inactivation of Hilpda had no effect on plasma levels of NEFA and glycerol after fasting, cold exposure, or pharmacological ß-adrenergic stimulation. In addition, other relevant metabolic parameters were unchanged by adipocyte-specific inactivation of Hilpda. Taken together, we find that HILPDA is highly abundant in adipose tissue, where its levels are induced by peroxisome proliferator-activated receptor γ and ß-adrenergic stimulation. In contrast to the reported inhibition of lipolysis by HILPDA in hepatocytes, our data do not support an important direct role of HILPDA in the regulation of lipolysis in adipocytes in vivo and in vitro.


Assuntos
Tecido Adiposo/metabolismo , Lipólise/genética , Proteínas de Neoplasias/fisiologia , Células 3T3-L1 , Adipócitos/fisiologia , Adipogenia/genética , Animais , Feminino , Gotículas Lipídicas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...