Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Clin Microbiol ; 60(7): e0034222, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35766514

RESUMO

The rapid emergence of SARS-CoV-2 variants raised public health questions concerning the capability of diagnostic tests to detect new strains, the efficacy of vaccines, and how to map the geographical distribution of variants to understand transmission patterns and loads on healthcare resources. Next-generation sequencing (NGS) is the primary method for detecting and tracing new variants, but it is expensive, and it can take weeks before sequence data are available in public repositories. This article describes a customizable reverse transcription PCR (RT-PCR)-based genotyping approach which is significantly less expensive, accelerates reporting, and can be implemented in any lab that performs RT-PCR. Specific single-nucleotide polymorphisms (SNPs) and indels were identified which had high positive-percent agreement (PPA) and negative-percent agreement (NPA) compared to NGS for the major genotypes that circulated through September 11, 2021. Using a 48-marker panel, testing on 1,031 retrospective SARS-CoV-2 positive samples yielded a PPA and NPA ranging from 96.3 to 100% and 99.2 to 100%, respectively, for the top 10 most prevalent World Health Organization (WHO) lineages during that time. The effect of reducing the quantity of panel markers was explored, and a 16-marker panel was determined to be nearly as effective as the 48-marker panel at lineage assignment. Responding to the emergence of Omicron, a genotyping panel was developed which distinguishes Delta and Omicron using four highly specific SNPs. The results demonstrate the utility of the condensed panel to rapidly track the growing prevalence of Omicron across the US in December 2021 and January 2022.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Técnicas de Amplificação de Ácido Nucleico , Estudos Retrospectivos , SARS-CoV-2/genética
3.
BMC Biotechnol ; 16(1): 54, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342544

RESUMO

BACKGROUND: Highly multiplexed assays for quantitation of RNA transcripts are being used in many areas of biology and medicine. Using data generated by these transcriptomic assays requires measurement assurance with appropriate controls. Methods to prototype and evaluate multiple RNA controls were developed as part of the External RNA Controls Consortium (ERCC) assessment process. These approaches included a modified Latin square design to provide a broad dynamic range of relative abundance with known differences between four complex pools of ERCC RNA transcripts spiked into a human liver total RNA background. RESULTS: ERCC pools were analyzed on four different microarray platforms: Agilent 1- and 2-color, Illumina bead, and NIAID lab-made spotted microarrays; and two different second-generation sequencing platforms: the Life Technologies 5500xl and the Illumina HiSeq 2500. Individual ERCC controls were assessed for reproducible performance in signal response to concentration among the platforms. Most demonstrated linear behavior if they were not located near one of the extremes of the dynamic range. Performance issues with any individual ERCC transcript could be attributed to detection limitations, platform-specific target probe issues, or potential mixing errors. Collectively, these pools of spike-in RNA controls were evaluated for suitability as surrogates for endogenous transcripts to interrogate the performance of the RNA measurement process of each platform. The controls were useful for establishing the dynamic range of the assay, as well as delineating the useable region of that range where differential expression measurements, expressed as ratios, would be expected to be accurate. CONCLUSIONS: The modified Latin square design presented here uses a composite testing scheme for the evaluation of multiple performance characteristics: linear performance of individual controls, signal response within dynamic range pools of controls, and ratio detection between pairs of dynamic range pools. This compact design provides an economical sample format for the evaluation of multiple external RNA controls within a single experiment per platform. These results indicate that well-designed pools of RNA controls, spiked into samples, provide measurement assurance for endogenous gene expression studies.


Assuntos
Perfilação da Expressão Gênica/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , RNA/genética , RNA/normas , Análise de Sequência de RNA/normas , Algoritmos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
J Interferon Cytokine Res ; 33(2): 90-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23276142

RESUMO

HIV is able to outpace the innate immune response, including that mediated by interferon (IFN), to establish a productive infection. Primary macrophages, however, may be protected from HIV infection by treatment with type I IFN before virus exposure. The ability of HIV to modulate the type I IFN-mediated innate immune response when it encounters a cell that has already been exposed to IFN remains poorly defined. The optimal pretreatment time (12 h) and the most potent HIV-inhibitors (e.g., IFN-α2 and -ω) were identified to investigate the ability of HIV to modulate an established type I IFN response. Gene expression at the level of the entire transcriptome was then compared between primary macrophages treated with type I IFNs, as opposed to treated with IFNs and then infected with HIV. Although HIV was not able to establish a robust infection, the virus was able to downregulate a number of IFN-stimulated genes (ISGs) with a fold change greater than 1.5 (i.e., AXL, IFI27, IFI44, IFI44L, ISG15, OAS1, OAS3, and XAF1). The downregulation of OAS1 by the presence of HIV was confirmed by real-time quantitative polymerase chain reaction. In conclusion, even though HIV replication is significantly inhibited by IFN pretreatment, the virus is able to downregulate the transcription of known antiviral ISGs (e.g., IFI44, ISG15, and OAS1).


Assuntos
Regulação para Baixo/genética , Infecções por HIV/genética , Infecções por HIV/patologia , HIV/fisiologia , Interferons/farmacologia , Macrófagos/metabolismo , Macrófagos/virologia , Células Cultivadas , HIV/efeitos dos fármacos , Infecções por HIV/virologia , Humanos , Macrófagos/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real
5.
PLoS Genet ; 7(12): e1002401, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174696

RESUMO

Precise control of the innate immune response is required for resistance to microbial infections and maintenance of normal tissue homeostasis. Because this response involves coordinate regulation of hundreds of genes, it provides a powerful biological system to elucidate the molecular strategies that underlie signal- and time-dependent transitions of gene expression. Comprehensive genome-wide analysis of the epigenetic and transcription status of the TLR4-induced transcriptional program in macrophages suggests that Toll-like receptor 4 (TLR4)-dependent activation of nearly all immediate/early- (I/E) and late-response genes results from a sequential process in which signal-independent factors initially establish basal levels of gene expression that are then amplified by signal-dependent transcription factors. Promoters of I/E genes are distinguished from those of late genes by encoding a distinct set of signal-dependent transcription factor elements, including TATA boxes, which lead to preferential binding of TBP and basal enrichment for RNA polymerase II immediately downstream of transcriptional start sites. Global nuclear run-on (GRO) sequencing and total RNA sequencing further indicates that TLR4 signaling markedly increases the overall rates of both transcriptional initiation and the efficiency of transcriptional elongation of nearly all I/E genes, while RNA splicing is largely unaffected. Collectively, these findings reveal broadly utilized mechanisms underlying temporally distinct patterns of TLR4-dependent gene activation required for homeostasis and effective immune responses.


Assuntos
Histona-Lisina N-Metiltransferase/genética , Imunidade Inata/genética , Inflamação/genética , Macrófagos/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Animais , Células Cultivadas , Epigênese Genética/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Homeostase , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Camundongos , Regiões Promotoras Genéticas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , TATA Box/genética , Fatores de Transcrição , Ativação Transcricional/genética , Ativação Transcricional/imunologia
6.
AIDS ; 24(2): 217-22, 2010 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19952713

RESUMO

OBJECTIVE: To identify a pre-HAART gene expression signature in peripheral blood mononuclear cells (PBMCs) predictive of CD4 T-cell recovery during HAART in HIV-infected individuals. DESIGN: This retrospective study evaluated PBMC gene expression in 24 recently HIV-infected individuals before the initiation of HAART to identify genes whose expression is predictive of CD4 T-cell recovery after 48 weeks of HAART. METHODS: The change in CD4 T-cell count (DeltaCD4) over the 48-week study period was calculated for each of the 24 participants. Twelve participants were assigned to the 'good' (DeltaCD4 > or = 200 cells/microl) and 12 to the 'poor' (DeltaCD4 < 200 cells/microl) CD4 T-cell recovery group. Gene expression profiling of the entire transcriptome using Illumina BeadChips was performed with PBMC samples obtained before HAART. Gene expression classifiers capable of predicting CD4 T-cell recovery group (good vs. poor), as well as the specific DeltaCD4 value, at week 48 were constructed using methods of Class Prediction. RESULTS: The expression of 40 genes in PBMC samples taken before HAART predicted CD4 T-cell recovery group (good vs. poor) at week 48 with 100% accuracy. The expression of 22 genes predicted a specific DeltaCD4 value for each HIV-infected individual that correlated well with actual values (R = 0.82). Predicted DeltaCD4 values were also used to assign individuals to good vs. poor CD4 T-cell recovery groups with 79% accuracy. CONCLUSION: Gene expression in PBMCs can be used as biomarkers to successfully predict disease outcomes among HIV-infected individuals treated with HAART.


Assuntos
Linfócitos T CD4-Positivos/citologia , Expressão Gênica/genética , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Perfilação da Expressão Gênica/métodos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Imunidade Celular , Masculino , Prognóstico , Estudos Retrospectivos , Fatores de Tempo
7.
J Biol Chem ; 284(50): 34628-39, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19801628

RESUMO

The extreme polarized morphology of neurons poses a challenging problem for intracellular trafficking pathways. The distant synaptic terminals must communicate via axonal transport with the cell soma for neuronal survival, function, and repair. Multiple classes of organelles transported along axons may establish and maintain the polarized morphology of neurons, as well as control signaling and neuronal responses to extracellular cues such as neurotrophic or stress factors. We reported previously that the motor-binding protein Sunday Driver (syd), also known as JIP3 or JSAP1, links vesicular axonal transport to injury signaling. To better understand syd function in axonal transport and in the response of neurons to injury, we developed a purification strategy based on anti-syd antibodies conjugated to magnetic beads to identify syd-associated axonal vesicles. Electron microscopy analyses revealed two classes of syd-associated vesicles of distinct morphology. To identify the molecular anatomy of syd vesicles, we determined their protein composition by mass spectrometry. Gene Ontology analyses of each vesicle protein content revealed their unique identity and indicated that one class of syd vesicles belongs to the endocytic pathway, whereas another may belong to an anterogradely transported vesicle pool. To validate these findings, we examined the transport and localization of components of syd vesicles within axons of mouse sciatic nerve. Together, our results lead us to propose that endocytic syd vesicles function in part to carry injury signals back to the cell body, whereas anterograde syd vesicles may play a role in axonal outgrowth and guidance.


Assuntos
Transporte Axonal/fisiologia , Axônios/metabolismo , Axônios/ultraestrutura , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Organelas/metabolismo , Sinaptossomos , Vesículas Transportadoras , Proteínas Adaptadoras de Transdução de Sinal , Animais , Axônios/patologia , Endocitose/fisiologia , Endossomos/metabolismo , Endossomos/ultraestrutura , Feminino , Separação Imunomagnética , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Motores Moleculares/metabolismo , Proteínas do Tecido Nervoso , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Nervo Isquiático/citologia , Nervo Isquiático/patologia , Transdução de Sinais/fisiologia , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestrutura
8.
Schizophr Res ; 113(2-3): 273-6, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19502011

RESUMO

Growing genetic evidence has implicated a role for neuregulin-1 (NRG-1) in schizophrenia pathogenesis as well as alterations in SNAP receptor (SNARE) proteins at both gene and protein levels in post-mortem investigations. In relation to a potential therapeutic mechanism for atypical antipsychotic medications, clozapine has been shown to increase both NRG-1 levels and synaptic markers in rodents. As evidence continues to mount for a potential restoration in connectivity by antipsychotic medications being a mode of efficacy we chose to examine the effects of the atypical antipsychotic clozapine and the typical antipsychotic haloperidol on NRG-1 and SNARE protein transcripts in human brain aggregates exposed to plasma levels chronically for a period of three weeks. At the end of this exposure period we performed quantitative real-time PCR to investigate the mRNA levels of NRG-1, VAMP-1 and SNAP-25. Overall we found that clozapine had the ability to upregulate NRG-1 (+3.58 fold change) and VAMP-1 (+1.92) while SNAP-25 remained unchanged. Changes for haloperidol exposed aggregates were below our cut-off of +1.5. Overall the results of our investigation lend further support to atypical antipsychotic medications having the potential to increase levels of neurotrophic and synaptic markers such as NRG-1 and VAMP-1, the former being a strong candidate susceptibility gene for schizophrenia. In the absence of frank neuronal loss in schizophrenia, restoration of neuronal and synaptic functions by atypical antipsychotics in the brains of schizophrenics maybe a key mechanism of therapeutic efficacy by re-establishing normal connectivity and functioning.


Assuntos
Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Clozapina/farmacologia , Neuregulina-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína 1 Associada à Membrana da Vesícula/metabolismo , Encéfalo/embriologia , Feto , Haloperidol/farmacologia , Humanos , Neuregulina-1/genética , Proteína 1 Associada à Membrana da Vesícula/genética
9.
Nucleic Acids Res ; 36(14): e87, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18579563

RESUMO

We have developed a highly sensitive, specific and reproducible method for microRNA (miRNA) expression profiling, using the BeadArray technology. This method incorporates an enzyme-assisted specificity step, a solid-phase primer extension to distinguish between members of miRNA families. In addition, a universal PCR is used to amplify all targets prior to array hybridization. Currently, assay probes are designed to simultaneously analyse 735 well-annotated human miRNAs. Using this method, highly reproducible miRNA expression profiles were generated with 100-200 ng total RNA input. Furthermore, very similar expression profiles were obtained with total RNA and enriched small RNA species (R(2) >or= 0.97). The method has a 3.5-4 log (10(5)-10(9) molecules) dynamic range and is able to detect 1.2- to 1.3-fold-differences between samples. Expression profiles generated by this method are highly comparable to those obtained with RT-PCR (R(2) = 0.85-0.90) and direct sequencing (R = 0.87-0.89). This method, in conjunction with the 96-sample array matrix should prove useful for high-throughput expression profiling of miRNAs in large numbers of tissue samples.


Assuntos
Perfilação da Expressão Gênica/métodos , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Linhagem Celular , Humanos , MicroRNAs/química , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA
10.
Mol Cell ; 29(1): 69-80, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18206970

RESUMO

Solving the biological roles of covalent histone modifications, including monoubiquitination of histone H2A, and the molecular mechanisms by which these modifications regulate specific transcriptional programs remains a central question for all eukaryotes. Here we report that the N-CoR/HDAC1/3 complex specifically recruits a specific histone H2A ubiquitin ligase, 2A-HUB/hRUL138, to a subset of regulated gene promoters. 2A-HUB catalyzes monoubiquitination of H2A at lysine 119, functioning as a combinatoric component of the repression machinery required for specific gene regulation programs. Thus, 2A-HUB mediates a selective repression of a specific set of chemokine genes in macrophages, critically modulating migratory responses to TLR activation. H2A monoubiquitination acts to prevent FACT recruitment at the transcriptional promoter region, blocking RNA polymerase II release at the early stage of elongation. We suggest that distinct H2A ubiquitinases, each recruited based on interactions with different corepressor complexes, contribute to distinct transcriptional repression programs.


Assuntos
Histonas/metabolismo , Ligases/fisiologia , Elongação Traducional da Cadeia Peptídica/genética , Processamento de Proteína Pós-Traducional/genética , RNA Polimerase II/antagonistas & inibidores , Proteínas de Ligação a RNA/fisiologia , Proteínas Repressoras/fisiologia , Transcrição Gênica/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Quimiocinas/biossíntese , Quimiocinas/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/fisiologia , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , Histona Desacetilase 1 , Histona Desacetilases/fisiologia , Humanos , Ligases/química , Macrófagos/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/fisiologia , Correpressor 1 de Receptor Nuclear , Correpressor 2 de Receptor Nuclear , Domínios RING Finger , Proteínas de Ligação a RNA/química , Proteínas Repressoras/química , Fatores de Elongação da Transcrição/antagonistas & inibidores , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação/genética
11.
Nature ; 446(7138): 882-7, 2007 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-17392792

RESUMO

Precise control of transcriptional programmes underlying metazoan development is modulated by enzymatically active co-regulatory complexes, coupled with epigenetic strategies. One thing that remains unclear is how specific members of histone modification enzyme families, such as histone methyltransferases and demethylases, are used in vivo to simultaneously orchestrate distinct developmental gene activation and repression programmes. Here, we report that the histone lysine demethylase, LSD1--a component of the CoREST-CtBP co-repressor complex--is required for late cell-lineage determination and differentiation during pituitary organogenesis. LSD1 seems to act primarily on target gene activation programmes, as well as in gene repression programmes, on the basis of recruitment of distinct LSD1-containing co-activator or co-repressor complexes. LSD1-dependent gene repression programmes can be extended late in development with the induced expression of ZEB1, a Krüppel-like repressor that can act as a molecular beacon for recruitment of the LSD1-containing CoREST-CtBP co-repressor complex, causing repression of an additional cohort of genes, such as Gh, which previously required LSD1 for activation. These findings suggest that temporal patterns of expression of specific components of LSD1 complexes modulate gene regulatory programmes in many mammalian organs.


Assuntos
Regulação para Baixo/genética , Regulação da Expressão Gênica no Desenvolvimento , Oxirredutases N-Desmetilantes/metabolismo , Animais , Diferenciação Celular , Hormônio do Crescimento/genética , Histona Desmetilases , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Lactotrofos/metabolismo , Camundongos , Oxirredutases N-Desmetilantes/deficiência , Oxirredutases N-Desmetilantes/genética , Hipófise/citologia , Hipófise/metabolismo , Ativação Transcricional , Homeobox 1 de Ligação a E-box em Dedo de Zinco
12.
BMC Mol Biol ; 7: 45, 2006 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-17134490

RESUMO

BACKGROUND: Macrophages (Mtheta) play a central role in the innate immune response and in the pathology of chronic inflammatory diseases. Macrophages treated with Th2-type cytokines such as Interleukin-4 (IL-4) and Interleukin-13 (IL-13) exhibit an altered phenotype and such alternatively activated macrophages are important in the pathology of diseases characterised by allergic inflammation including asthma and atopic dermatitis. The CC chemokine Thymus and Activation-Regulated Chemokine (TARC/CCL17) and its murine homologue (mTARC/ABCD-2) bind to the chemokine receptor CCR4, and direct T-cell and macrophage recruitment into areas of allergic inflammation. Delineating the molecular mechanisms responsible for the IL-4 induction of TARC expression will be important for a better understanding of the role of Th2 cytokines in allergic disease. RESULTS: We demonstrate that mTARC mRNA and protein are potently induced by the Th2 cytokine, Interleukin-4 (IL-4), and inhibited by Interferon-gamma (IFN-gamma) in primary macrophages (Mtheta). IL-4 induction of mTARC occurs in the presence of PI3 kinase pathway and translation inhibitors, but not in the absence of STAT6 transcription factor, suggesting a direct-acting STAT6-mediated pathway of mTARC transcriptional activation. We have functionally characterised eleven putative STAT6 sites identified in the mTARC proximal promoter and determined that five of these contribute to the IL-4 induction of mTARC. By in vitro binding assays and transient transfection of isolated sites into the RAW 264.7 Mtheta cell-line, we demonstrate that these sites have widely different capacities for binding and activation by STAT6. Site-directed mutagenesis of these sites within the context of the mTARC proximal promoter revealed that the two most proximal sites, conserved between the human and mouse genes, are important mediators of the IL-4 response. CONCLUSION: The induction of mTARC by IL-4 results from cooperative interactions between STAT6 sites within the mTARC gene promoter. Significantly, we have shown that transfer of the nine most proximal mTARC STAT6 sites in their endogenous conformation confers potent (up to 130-fold) IL-4 inducibility on heterologous promoters. These promoter elements constitute important and sensitive IL-4-responsive transcriptional units that could be used to drive transgene expression in sites of Th2 inflammation in vivo.


Assuntos
Quimiocinas CC/genética , Interleucina-4/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT6/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Quimiocina CCL17 , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/efeitos dos fármacos , Luciferases/genética , Luciferases/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Transcrição STAT6/genética , Transfecção
13.
Cancer Res ; 66(11): 5565-73, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16740691

RESUMO

The proto-oncogene c-Myc plays a central role in cell growth and the development of human tumors. c-Myc interacts with Max and Myc-Max complexes bind to E-box and related sequences to activate transcription. Max also interacts with Mnt but Mnt-Max complexes repress transcription when bound to these sequences. MNT maps to human chromosome 17p13.3, a region frequently deleted in various human tumors, including mammary gland tumors. Consistent with the possibility that Mnt functions as a Myc antagonist, Mnt-deficient fibroblasts exhibit many of the hallmark characteristics of cells that overexpress Myc, and conditional (Cre/Lox) inactivation of Mnt in mammary gland epithelium leads to adenocarcinomas. Here, we further characterize mammary gland tissue following conditional deletion of Mnt in the mammary gland. We show that loss of Mnt severely disrupts mammary gland involution and leads to hyperplastic ducts associated with reduced numbers of apoptotic cells. These findings suggest that loss of Mnt in mammary tissue has similarities to Myc overexpression. We tested this directly by using promoter array analysis and mRNA expression analysis by oligonucleotide arrays. We found that Mnt and c-Myc bound to similar promoters in tumors from MMTV-c-Myc transgenic mice, and mRNA expression patterns were similar between mammary tumors from MMTV-Cre/Mnt(KO/CKO) and MMTV-c-Myc transgenic mice. These results reveal an important role for Mnt in pregnancy-associated mammary gland development and suggest that mammary gland tumorigenesis in the absence of Mnt is analogous to that caused by Myc deregulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/deficiência , Genes Supressores de Tumor , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Experimentais/genética , Proteínas Proto-Oncogênicas c-myc/biossíntese , Animais , Apoptose/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Lactação/fisiologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
14.
Cell ; 122(5): 707-21, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-16143103

RESUMO

Nuclear receptors (NRs) repress transcriptional responses to diverse signaling pathways as an essential aspect of their biological activities, but mechanisms determining the specificity and functional consequences of transrepression remain poorly understood. Here, we report signal- and gene-specific repression of transcriptional responses initiated by engagement of toll-like receptors (TLR) 3, 4, and 9 in macrophages. The glucocorticoid receptor (GR) represses a large set of functionally related inflammatory response genes by disrupting p65/interferon regulatory factor (IRF) complexes required for TLR4- or TLR9-dependent, but not TLR3-dependent, transcriptional activation. This mechanism requires signaling through MyD88 and enables the GR to differentially regulate pathogen-specific programs of gene expression. PPARgamma and LXRs repress overlapping transcriptional targets by p65/IRF3-independent mechanisms and cooperate with the GR to synergistically transrepress distinct subsets of TLR-responsive genes. These findings reveal combinatorial control of homeostasis and immune responses by nuclear receptors and suggest new approaches for treatment of inflammatory diseases.


Assuntos
Glicoproteínas de Membrana/fisiologia , Receptor Cross-Talk/fisiologia , Receptores de Superfície Celular/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Perfilação da Expressão Gênica , Fator Regulador 3 de Interferon , Fator Regulador 7 de Interferon , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/metabolismo , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , NF-kappa B/metabolismo , Receptores Nucleares Órfãos , PPAR gama/fisiologia , Receptores de Superfície Celular/genética , Receptores de Glucocorticoides/fisiologia , Transdução de Sinais/fisiologia , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Receptores Toll-Like , Fator de Transcrição RelA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
AIDS Res Hum Retroviruses ; 20(11): 1210-22, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15588343

RESUMO

Macrophages represent one of the primary targets of HIV-1 infection. Changes in gene expression in primary human monocyte-derived macrophages following virus exposure were assessed using oligonucleotide arrays. Over a third of the 100 most modulated genes belonged to the interferon system. Upregulated interferon-stimulated genes included those essential for the innate immune response and also those involved in interferon and virus signal transduction from the cell surface. The promoter regions of a cluster of highly upregulated interferon-stimulated genes were analyzed for common regulatory elements. The nuclear factor in activated T cells (NFAT) and members of the interferon family of transcription factors appeared to be responsible for the upregulation of this set of interferon-stimulated genes following HIV-1 exposure.


Assuntos
HIV-1/patogenicidade , Interferons/metabolismo , Macrófagos/virologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/metabolismo , Regulação para Cima , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Infecções por HIV/virologia , Humanos , Interferons/genética , Interferons/farmacologia , Ativação de Macrófagos , Macrófagos/imunologia , Monócitos/imunologia , Monócitos/virologia , Fatores de Transcrição NFATC , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 101(40): 14461-6, 2004 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-15452344

RESUMO

The nuclear receptor corepressor (NCoR) and the related factor known as silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) are essential components of multiprotein complexes that mediate active repression by unliganded nuclear receptors. Recent studies suggest that NCoR and SMRT can interact with and exert repressive effects on several other classes of DNA-binding transcription factors, but the physiological importance of these interactions has not been established. Here, investigation of endogenous transcriptional programs regulated by NCoR in macrophages reveals that NCoR acts as a transcriptional checkpoint for activator protein (AP)-1-dependent gene networks that regulate diverse biological processes including inflammation, cell migration, and collagen catabolism, with loss of NCoR, resulting in derepression of AP-1 target genes. The NCoR corepressor complex imposes an active block of exchange of c-Jun for c-Jun/c-Fos heterodimers, with targeted deletion of the c-Jun locus, resulting in loss of NCoR complexes from AP-1 target genes under basal conditions. The checkpoint function of NCoR is relieved by signal-dependent phosphorylation of c-Jun, which directs removal of NCoR/HDAC3/TBL1/TBLR1 complexes through recruitment of a specific ubiquitylation complex, as a prerequisite to the default binding of c-Jun/c-Fos heterodimers and transcriptional activation. The requirement for a checkpoint function to achieve the appropriate dynamic range of transcriptional responses to inflammatory signals is likely to be used by other signal-dependent transcription factors that regulate diverse homeostatic and developmental processes.


Assuntos
Ativação de Macrófagos/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Células Cultivadas , Genes jun , Ativação de Macrófagos/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...