Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505957

RESUMO

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

3.
Nature ; 590(7847): 566-570, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627809

RESUMO

When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning1; this phenomenon has been a mystery in nuclear physics for over 40 years2,3. The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum4-12. Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the γ-ray heating problem in nuclear reactors13,14, for the study of the structure of neutron-rich isotopes15,16, and for the synthesis and stability of super-heavy elements17,18.

4.
Phys Rev Lett ; 124(11): 112501, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32242689

RESUMO

The gyromagnetic factor of the low-lying E=251.96(9) keV isomeric state of the nucleus ^{99}Zr was measured using the time-dependent perturbed angular distribution technique. This level is assigned a spin and parity of J^{π}=7/2^{+}, with a half-life of T_{1/2}=336(5) ns. The isomer was produced and spin aligned via the abrasion-fission of a ^{238}U primary beam at RIKEN RIBF. A magnetic moment |µ|=2.31(14)µ_{N} was deduced showing that this isomer is not single particle in nature. A comparison of the experimental values with interacting boson-fermion model IBFM-1 results shows that this state is strongly mixed with a main νd_{5/2} composition. Furthermore, it was found that monopole single-particle evolution changes significantly with the appearance of collective modes, likely due to type-II shell evolution.

6.
Phys Rev Lett ; 120(2): 022502, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376727

RESUMO

The g factor of the 56 ns half-life isomeric state in ^{128}Cs has been measured using the time-differential perturbed angular distribution method. This state is the bandhead of the positive-parity chiral rotational band, which emerges when an unpaired proton, an unpaired neutron hole, and an even-even core are coupled such that their angular momentum vectors are aplanar (chiral configuration). g-factor measurements can give important information on the relative orientation of the three angular momentum vectors. The measured g factor g=+0.59(1) shows that there is an important contribution of the core rotation in the total angular momentum of the isomeric state. Moreover, a quantitative theoretical analysis supports the conclusion that the three angular momentum vectors lie almost in one plane, which suggests that the chiral configuration in ^{128}Cs demonstrated in previous works by characteristic patterns of electromagnetic transitions appears only above some value of the total nuclear spin.

7.
Phys Rev Lett ; 119(19): 192501, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219515

RESUMO

In-beam γ-ray spectroscopy of ^{79}Cu is performed at the Radioactive Isotope Beam Factory of RIKEN. The nucleus of interest is produced through proton knockout from a ^{80}Zn beam at 270 MeV/nucleon. The level scheme up to 4.6 MeV is established for the first time and the results are compared to Monte Carlo shell-model calculations. We do not observe significant knockout feeding to the excited states below 2.2 MeV, which indicates that the Z=28 gap at N=50 remains large. The results show that the ^{79}Cu nucleus can be described in terms of a valence proton outside a ^{78}Ni core, implying the magic character of the latter.

8.
Phys Rev Lett ; 118(22): 222501, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621970

RESUMO

Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

9.
Phys Rev Lett ; 118(16): 162501, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474951

RESUMO

Prompt γ-ray spectroscopy of the neutron-rich ^{96}Kr, produced in transfer- and fusion-induced fission reactions, has been performed using the combination of the Advanced Gamma Tracking Array and the VAMOS++ spectrometer. A second excited state, assigned to J^{π}=4^{+}, is observed for the first time, and a previously reported level energy of the first 2^{+} excited state is confirmed. The measured energy ratio R_{4/2}=E(4^{+})/E(2^{+})=2.12(1) indicates that this nucleus does not show a well-developed collectivity contrary to that seen in heavier N=60 isotones. This new measurement highlights an abrupt transition of the degree of collectivity as a function of the proton number at Z=36, of similar amplitude to that observed at N=60 at higher Z values. A possible reason for this abrupt transition could be related to the insufficient proton excitations in the g_{9/2}, d_{5/2}, and s_{1/2} orbitals to generate strong quadrupole correlations or to the coexistence of competing different shapes. An unexpected continuous decrease of R_{4/2} as a function of the neutron number up to N=60 is also evidenced. This measurement establishes the Kr isotopic chain as the low-Z boundary of the island of deformation for N=60 isotones. A comparison with available theoretical predictions using different beyond mean-field approaches shows that these models fail to reproduce the abrupt transitions at N=60 and Z=36.

10.
Phys Rev Lett ; 115(19): 192501, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588374

RESUMO

We report on the measurement of the first 2(+) and 4(+) states of (66)Cr and (70,72)Fe via in-beam γ-ray spectroscopy. The nuclei of interest were produced by (p,2p) reactions at incident energies of 260 MeV/nucleon. The experiment was performed at the Radioactive Isotope Beam Factory, RIKEN, using the DALI 2γ-ray detector array and the novel MINOS device, a thick liquid hydrogen target combined with a vertex tracker. A low-energy plateau of 2(1)(+) and 4(1)(+) energies as a function of the neutron number was observed for N≥38 and N≥40 for even-even Cr and Fe isotopes, respectively. State-of-the-art shell model calculations with a modified Lenzi-Nowacki-Poves-Sieja (LNPS) interaction in the pfg(9/2)d(5/2) valence space reproduce the observations. Interpretation within the shell model shows an extension of the island of inversion at N=40 for more neutron-rich isotopes towards N=50.

11.
Phys Rev Lett ; 109(1): 012501, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-23031099

RESUMO

The rotational band structure of the Z=104 nucleus (256)Rf has been observed up to a tentative spin of 20ℏ using state-of-the-art γ-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing in superheavy nuclei which is essential to ensure the validity of contemporary nuclear models in this mass region. The data obtained show that there is no deformed shell gap at Z=104, which is predicted in a number of current self-consistent mean-field models.

12.
Phys Rev Lett ; 102(9): 092501, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392514

RESUMO

We report on the g-factor measurement of the first isomeric state in (16)43S27 [Ex=320.5(5) keV, T1/2=415(5) ns, and g=0.317(4)]. The 7/2- spin-parity of the isomer and the intruder nature of the ground state of the nucleus are experimentally established for the first time, providing direct and unambiguous evidence of the collapse of the N=28 shell closure in neutron-rich nuclei. The shell model, beyond the mean-field and semiempirical calculations, provides a very consistent description of this nucleus showing that a well deformed prolate and quasispherical states coexist at low energy.

13.
Phys Rev Lett ; 102(9): 092502, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392515

RESUMO

The gamma decay from Coulomb excitation of 68Ni at 600 MeV/nucleon on a Au target was measured using the RISING setup at the fragment separator of GSI. The 68Ni beam was produced by a fragmentation reaction of 86Kr at 900 MeV/nucleon on a 9Be target and selected by the fragment separator. The gamma rays produced at the Au target were measured with HPGe detectors at forward angles and with BaF2 scintillators at backward angles. The measured spectra show a peak centered at approximately 11 MeV, whose intensity can be explained in terms of an enhanced strength of the dipole response function (pygmy resonance). Such pygmy structure has been predicted in this unstable neutron-rich nucleus by theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...