Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2462: 155-162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152387

RESUMO

Immunofluorescent approach uses fluorophore-conjugated antibodies to target molecules of interest for the observation of their distribution and microenvironment at cellular or tissue level. In connection with modern fluorescence microscopy, immunofluorescence has high sensitivity and specificity, resulting in a wide range of applications in animal studies. However, the protocols of immunofluorescence are seldom reported. To this end, we describe an optimized protocol for the detection of plant hormone abscisic acid (ABA) in monocot crop species, including maize and rice. By using immunofluorescence technique provided from this protocol, investigation of ABA distribution will continue to deeper our insights in crop developments and stress responses.


Assuntos
Ácido Abscísico , Oryza , Imunofluorescência , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
2.
Plant Cell Environ ; 44(1): 88-101, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32677712

RESUMO

Germination is a plant developmental process by which radicle of mature seeds start to penetrate surrounding barriers for seedling establishment and multiple environmental factors have been shown to affect it. Little is known how high salinity affects seed germination of C4 plant, Zea mays. Preliminary germination assay suggested that isolated embryo alone was able to germinate under 200 mM NaCl treatment, whereas the intact seeds were highly repressed. We hypothesized that maize endosperm may function in perception and transduction of salt signal to surrounding tissues such as embryo, showing a completely different response to that in Arabidopsis. Since salt response involves ABA, we analysed in vivo ABA distribution and quantity and the result demonstrated that ABA level in isolated embryo under NaCl treatment failed to increase in comparison with the water control, suggesting that the elevation of ABA level is an endosperm dependent process. Subsequently, by using advanced profiling techniques such as RNA sequencing and SWATH-MS-based quantitative proteomics, we found substantial differences in post-transcriptional and translational changes between salt-treated embryo and endosperm. In summary, our results indicate that these regulatory mechanisms, such as alternative splicing, are likely to mediate early responses to salt stress during maize seed germination.


Assuntos
Sementes/metabolismo , Cloreto de Sódio/metabolismo , Zea mays/genética , Ácido Abscísico/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteoma , Estresse Salino , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
3.
Mol Plant Pathol ; 21(5): 636-651, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32077242

RESUMO

Copper-based antimicrobial compounds are widely and historically used to control plant diseases, such as late blight caused by Phytophthora infestans, which seriously affects the yield and quality of potato. We previously identified that copper ion (Cu2+ ) acts as an extremely sensitive elicitor to induce ethylene (ET)-dependent immunity in Arabidopsis. Here, we found that Cu2+ induces the defence response to P. infestans in potato. Cu2+ suppresses the transcription of the abscisic acid (ABA) biosynthetic genes StABA1 and StNCED1, resulting in decreased ABA content. Treatment with ABA or inhibitor fluridone made potato more susceptible or resistance to late blight, respectively. In addition, potato with knockdown of StABA1 or StNCED1 showed greater resistance to late blight, suggesting that ABA negatively regulates potato resistance to P. infestans. Cu2+ also promotes the rapid biosynthesis of ET. Potato plants treated with 1-aminocyclopropane-1-carboxylate showed enhanced resistance to late blight. Repressed expression of StEIN2 or StEIN3 resulted in enhanced transcription of StABA1 and StNCED1, accumulation of ABA and susceptibility to P. infestans. Consistently, StEIN3 directly binds to the promoter regions of StABA1 and StNCED1. Overall, we concluded that Cu2+ triggers the defence response to potato late blight by activating ET biosynthesis to inhibit the biosynthesis of ABA.


Assuntos
Cobre/farmacologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacologia , Etilenos/metabolismo , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Phytophthora infestans/patogenicidade , Proteínas de Plantas/genética , Piridonas/farmacologia , Solanum tuberosum/microbiologia
4.
New Phytol ; 223(1): 277-292, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30790290

RESUMO

In mammalians and yeast, the splicing factor U2AF65/Mud2p functions in precursor messenger RNA (pre-mRNA) processing. Arabidopsis AtU2AF65b encodes a putative U2AF65 but its specific functions in plants are unknown. This paper examines the function of AtU2AF65b as a negative regulator of flowering time in Arabidopsis. We investigated the expression and function of AtU2AF65b in abscisic acid (ABA)-regulated flowering as well as the transcript abundance and pre-mRNA splicing of flowering-related genes in the knock-out mutants of AtU2AF65b. The atu2af65b mutants show early-flowering phenotype under both long-day and short-day conditions. The transcript accumulation of the flowering repressor gene FLOWERING LOCUS C (FLC) is reduced in the shoot apex of atu2af65b, due to both increased intron retention and reduced transcription activation. Reduced transcription of FLC results, at least partially, from the abnormal splicing and reduced transcript abundance of ABSCISIC ACID-INSENSITIVE 5 (ABI5), which encodes an activator of FLC in ABA-regulated flowering signaling. Additionally, the expression of AtU2AF65b is promoted by ABA. Transition to flowering and splicing of FLC and ABI5 in the atu2af65b mutants are compromised during ABA-induced flowering. ABA-responsive AtU2AF65b functions in the pre-mRNA splicing of FLC and ABI5 in shoot apex, whereby AtU2AF65b is involved in ABA-mediated flowering transition in Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Flores/fisiologia , Proteínas de Domínio MADS/genética , Splicing de RNA/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Íntrons/genética , Proteínas de Domínio MADS/metabolismo , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Plântula/metabolismo , Fator de Processamento U2AF/metabolismo , Transcrição Gênica , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...