Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 46829, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28695895

RESUMO

This corrects the article DOI: 10.1038/srep45832.

2.
Sci Rep ; 7: 45832, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28361999

RESUMO

Novel chemical vapor deposition (CVD) process was successfully developed for the growth of Sr2Si5N8:Ce3+ phosphors with elevated luminescent properties. Metallic strontium was used as a vapor source for producing Sr3N2 vapor to react with Si3N4 powder via a homogeneous gas-solid reaction. The phosphors prepared via the CVD process showed high crystallinity, homogeneous particle size ranging from 8 to 10 µm, and high luminescence properties. In contrast, the phosphors prepared via the conventional solid-state reaction process exhibited relative low crystallinity, non-uniform particle size in the range of 0.5-5 µm and relatively lower luminescent properties than the phosphors synthesized via the CVD process. Upon the blue light excitation, Sr2-xCexSi5N8 phosphors exhibited a broad yellow band. A red shift of the emission band from 535 to 556 nm was observed with the increment in the doping amount of Ce3+ ions from x = 0.02 to x = 0.10. The maximum emission was observed at x = 0.06, and the external and internal quantum efficiencies were calculated to be 51% and 71%, respectively. Furthermore, the CVD derived optimum Sr1.94Ce0.06Si5N8 phosphor exhibited sufficient thermal stability for blue-LEDs and the activation energy was calculated to be 0.33 eV. The results demonstrate a potential synthesis process for nitride phosphors suitable for light emitting diodes.

3.
Sci Rep ; 6: 25787, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189117

RESUMO

This research is focused on the temperature sensing ability of perovskite SrZrO3:Eu(3+) hollow spheres synthesized via the sol-gel method followed by heating. The Rietveld refinement indicated that the precursors annealed at 1100 °C were crystallized to form orthorhombic SrZrO3. SrZrO3 particles exhibited non-agglomerated hollow spherical morphology with an average particle size of 300 nm. The UV-excited photoluminescence spectrum of SrZrO3:Eu(3+) consisted of two regions. One region was associated with SrZrO3 trap emission, and the other one was related to the emission of Eu(3+) ions. The intensity ratio of the emission of Eu(3+) ions to the host emission (FIR) and the emission lifetime of Eu(3+) ions were measured in the temperature range of 300-550 K. The sensitivity obtained via the lifetime method was 7.3× lower than that measured via the FIR. Within the optimum temperature range of 300-460 K, the as-estimated sensor sensitivity was increased from 0.0013 to 0.028 K(-1). With a further increase in temperatures, the sensitivity started to decline. A maximum relative sensitivity was estimated to be 2.22%K(-1) at 460 K. The resolutions in both methods were below 1K in the above temperature range. The results indicated the suitability of SrZrO3:Eu(3+) for the distinct high temperature sensing applications.

4.
Opt Lett ; 41(3): 464-7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907398

RESUMO

Monophasic NaYF4:Er(3+)/Yb(3+) crystals were synthesized via the microwave-assisted hydrothermal route at 180°C. Microwave heating during the hydrothermal process substantially reduces the duration of reaction for the formation of cubic-NaYF4:Er(3+)/Yb(3+) nanocrystals from 6 h to 30 min. As the duration of the reaction increases, cubic-NaYF4:Er(3+)/Yb(3+) nanocrystals are transformed to uniform hexagonal-NaYF4:Er(3+)/Yb(3+) microprisms because of the enhanced reaction kinetics. Bright upconverted emission from the NaYF4:Er(3+)/Yb(3+) crystal, obtained by the efficient two-photon excitation, is related to crystal structure and morphology. The hexagonal microprisms exhibit better upconversion and are employed in security applications.

5.
Nanoscale Res Lett ; 9(1): 32, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24428954

RESUMO

We demonstrate that heterojunction photovoltaics based on hydrothermal-grown In2S3 on p-Si were fabricated and characterized in the paper. An n-type In2S3 nanoflake-based film with unique 'cross-linked network' structure was grown on the prepared p-type silicon substrate. It was found that the bandgap energy of such In2S3 film is 2.5 eV by optical absorption spectra. This unique nanostructure significantly enhances the surface area of the In2S3 films, leading to obtain lower reflectance spectra as the thickness of In2S3 film was increased. Additionally, such a nanostructure resulted in a closer spacing between the cross-linked In2S3 nanostructures and formed more direct conduction paths for electron transportation. Thus, the short-circuit current density (Jsc) was effectively improved by using a suitable thickness of In2S3. The power conversion efficiency (PCE, η) of the AZO/In2S3/textured p-Si heterojunction solar cell with 100-nm-thick In2S3 film was 2.39%.

6.
J Environ Radioact ; 109: 36-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22260929

RESUMO

During nuclear accidents, when radioactive materials spread into the environment, the people in the affected areas should evacuate immediately. However, few information systems are available regarding escape guidelines for nuclear accidents. Therefore, this study constructs escape guidelines on mobile phones. This application is called Mobile Escape Guidelines (MEG) and adopts two techniques. One technique is the geographical information that offers multiple representations; the other is the augmented reality that provides semi-realistic information services. When this study tested the mobile escape guidelines, the results showed that this application was capable of identifying the correct locations of users, showing the escape routes, filtering geographical layers, and rapidly generating the relief reports. Users could evacuate from nuclear accident sites easily, even without relief personnel, since using slim devices to access the mobile escape guidelines is convenient. Overall, this study is a useful reference for a nuclear accident emergency response.


Assuntos
Sistemas de Informação Geográfica , Guias como Assunto , Centrais Nucleares , Liberação Nociva de Radioativos
7.
J Hazard Mater ; 159(2-3): 636-9, 2008 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18394795

RESUMO

Iron-ion doped titania thin films with an anatase phase were successfully synthesized in this study using the high-pressure crystallization (HPC) process. The crystallization temperature of Fe(3+)-doped TiO(2) thin films was markedly reduced to be as low as 125 degrees C. The films prepared via the HPC process have a more uniform microstructure and smaller grain sizes than the films prepared via the atmospheric-pressure annealing process. The films prepared via both processes were found to have photocatalytic properties under visible light. The films prepared via the HPC process exhibited enhanced photocatalytic activities in comparison with the films annealed via the conventional process. Increasing the annealing temperature in the HPC process resulted in an improvement in the photocatalytic properties because of an increase in the crystallinity of the prepared films. The HPC process was demonstrated to be a potential method for synthesizing visible-light driven titania thin films with enhanced photocatalytic activities at low temperatures.


Assuntos
Ferro/química , Titânio/química , Catálise , Cristalização , Luz , Microscopia Eletrônica de Varredura , Pressão , Espectrofotometria Ultravioleta , Propriedades de Superfície , Temperatura , Difração de Raios X
8.
Artif Organs ; 32(2): 167-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18269355

RESUMO

Metal pins used to apply skeletal traction or external fixation devices protruding through skin are susceptible to the increased incidence of pin site infection. In this work, we tried to establish the photokilling effects of titanium dioxide (TiO2) nanoparticles on an orthopedic implant with an in vitro study. In these photocatalytic experiments, aqueous TiO2 was added to the tested microorganism. The time effect of TiO2 photoactivation was evaluated, and the loss of viability of five different bacteria suspensions (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae, and Bacteroides fragilis) was examined by the viable count procedure. The bactericidal effect of TiO2 nanoparticle-coated metal plates was also tested. The ultraviolet (UV) dosage used in this experiment did not affect the viability of bacteria, and all bacteria survived well in the absence of TiO2 nanoparticles. The survival curve of microorganisms in the presence of TiO2 nanoparticles showed that nearly complete killing was achieved after 50 min of UV illumination. The formation of bacterial colonies above the TiO2 nanoparticle-coated metal plates also decreased significantly. In this study, we clearly demonstrated the bactericidal effects of titanium dioxide nanoparticles. In the presence of UV light, the titanium dioxide nanoparticles can be applicable to medical facilities where the potential for infection should be controlled.


Assuntos
Antibacterianos/farmacologia , Pinos Ortopédicos/microbiologia , Materiais Revestidos Biocompatíveis/farmacologia , Fármacos Fotossensibilizantes , Titânio/farmacologia , Bacteroides fragilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Contagem de Colônia Microbiana , Enterococcus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fixadores Externos , Humanos , Nanopartículas Metálicas , Infecções Relacionadas à Prótese/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Raios Ultravioleta
9.
J Hazard Mater ; 154(1-3): 649-54, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18077085

RESUMO

A reverse microemulsion-mediated hydrothermal route has been employed to synthesize photocatalytic titanium dioxide (TiO2) powders. Nano-crystalline monophasic anatase TiO2 powders were successfully prepared when the microemulsion-derived precursors were hydrothermally treated. The advantage of using this microemulsion mediated hydrothermal route is the significant reduction in reaction time and temperatures as compared with the conventional hydrothermal process. The oil/water emulsion ratio significantly affected the particle sizes of the obtained TiO2 powders. The specific surface area of TiO2 powders was increased with the oil/water ratio, thereby leading to enhanced photocatalytic activity of TiO2 powders. As the hydrothermal temperature was elevated, the morphology of the TiO2 particles changed from a rod-like shape into a polyhedral shape. The variation in microstructures decreased the specific surface area of the TiO2 powders and lowered the photocatalytic activity.


Assuntos
Nanopartículas/química , Titânio/química , Catálise , Emulsões , Temperatura Alta , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Fotoquímica , Pós , Propriedades de Superfície , Difração de Raios X
10.
J Hazard Mater ; 147(1-2): 213-8, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17287078

RESUMO

TiO2 thin films with a monophasic anatase structure were synthesized via a high-pressure crystallization (HPC) process which successfully lowered the crystallization temperature of TiO2 films from 350 to 150 degrees C. The thermal budget and energy consumption during the crystallization process were markedly reduced and dense films without cracks were obtained. During the HPC process, crystallization took place throughout the films and TiO2 films with uniform crystallinity were obtained. The HPC process also led to an enhancement in the wettability of TiO2 thin films. The hydrophilicity of the films increased with heating temperatures via high-pressure annealing. In comparison with the conventional annealing, the HPC process not only produced TiO2 films with superior photo-induced super-hydrophilicity, but also led to higher photocatalytic activity of the films. The HPC process was confirmed to provide a new route for synthesizing well-crystallized anatase TiO2 thin films with high photocatalytic activity and good wettability at low temperatures.


Assuntos
Fotoquímica , Titânio , Temperatura Baixa , Cristalização , Pressão , Temperatura , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA