Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 522(3): 749-756, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31787230

RESUMO

Sleep deprivation (SD) has detrimental effects on the physiological function of the brain. However, the underlying mechanism remains elusive. In the present study, we investigated the expression of candidate plasticity-related gene 15 (cpg15), a neurotrophic gene, and its potential role in SD using a REM-SD mouse model. Immunofluorescent and Western blot analysis revealed that the expression of cpg15 protein decreased in the hippocampus, ventral group of the dorsal thalamus (VENT), and somatosensory area of cerebral cortex (SSP) after 24-72 h of REM-SD, and the oxidative stress in these brain regions was increased in parallel, as indicated by the ratio of glutathione (GSH) to its oxidative product (GSSG). Over-expression of cpg15 in thalamus, hippocampus, and cerebral cortex mediated by AAV reduced the oxidative stress in these regions, indicating that the decrease of cpg15 might be a cause that augments oxidative stress in the sleep deprived mouse brain. Collectively, the results imply that cpg15 may play a protective function in the SD-subjected mouse brain via an anti-oxidative function. To our knowledge, this is the first time to provide evidences in the role of cpg15 against SD-induced oxidative stress in the brain.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo , Privação do Sono/metabolismo , Animais , Encéfalo/patologia , Células COS , Chlorocebus aethiops , Proteínas Ligadas por GPI/metabolismo , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Privação do Sono/patologia
2.
J Neurosci ; 37(6): 1628-1647, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069924

RESUMO

The present study focuses on the function of cpg15, a neurotrophic factor, in ischemic neuronal recovery using transient global cerebral ischemic (TGI) mouse model and oxygen-glucose deprivation (OGD)-treated primary cultured cells. The results showed that expression of cpg15 proteins in astrocytes, predominantly the soluble form, was significantly increased in mouse hippocampus after TGI and in the cultured astrocytes after OGD. Addition of the medium from the cpg15-overexpressed astrocytic culture into the OGD-treated hippocampal neuronal cultures reduces the neuronal injury, whereas the recovery of neurite outgrowths of OGD-injured neurons was prevented when cpg15 in the OGD-treated astrocytes was knocked down, or the OGD-treated-astrocytic medium was immunoadsorbed by cpg15 antibody. Furthermore, lentivirus-delivered knockdown of cpg15 expression in mouse hippocampal astrocytes diminishes the dendritic branches and exacerbates injury of neurons in CA1 region after TGI. In addition, treatment with inhibitors of MEK1/2, PI3K, and TrkA decreases, whereas overexpression of p-CREB, but not dp-CREB, increases the expression of cpg15 in U118 or primary cultured astrocytes. Also, it is observed that the Flag-tagged soluble cpg15 from the astrocytes transfected with Flag-tagged cpg15-expressing plasmids adheres to the surface of neuronal bodies and the neurites. In conclusion, our results suggest that the soluble cpg15 from astrocytes induced by ischemia could ameliorate the recovery of the ischemic-injured hippocampal neurons via adhering to the surface of neurons. The upregulated expression of cpg15 in astrocytes may be activated via MAPK and PI3K signal pathways, and regulation of CREB phosphorylation.SIGNIFICANCE STATEMENT Neuronal plasticity plays a crucial role in the amelioration of neurological recovery of ischemic injured brain, which remains a challenge for clinic treatment of cerebral ischemia. cpg15 as a synaptic plasticity-related factor may participate in promoting the recovery process; however, the underlying mechanisms are still largely unknown. The objective of this study is to reveal the function and mechanism of neuronal-specific cpg15 expressed in astrocytes after ischemia induction, in promoting the recovery of injured neurons. Our findings provided new mechanistic insight into the neurological recovery, which might help develop novel therapeutic options for cerebral ischemia via astrocytic-targeting interference of gene expression.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Animais , Astrócitos/patologia , Isquemia Encefálica/patologia , Linhagem Celular Tumoral , Células Cultivadas , Proteínas Ligadas por GPI/biossíntese , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuritos/metabolismo , Neuritos/patologia , Neurônios/patologia , Distribuição Aleatória , Recuperação de Função Fisiológica/fisiologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...