Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 55, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403642

RESUMO

Micro/nanorobots hold exciting prospects for biomedical and even clinical applications due to their small size and high controllability. However, it is still a big challenge to maneuver micro/nanorobots into narrow spaces with high deformability and adaptability to perform complicated biomedical tasks. Here, we report a light-controlled soft bio-microrobots (called "Ebot") based on Euglena gracilis that are capable of performing multiple tasks in narrow microenvironments including intestinal mucosa with high controllability, deformability and adaptability. The motion of the Ebot can be precisely navigated via light-controlled polygonal flagellum beating. Moreover, the Ebot shows highly controlled deformability with different light illumination duration, which allows it to pass through narrow and curved microchannels with high adaptability. With these features, Ebots are able to execute multiple tasks, such as targeted drug delivery, selective removal of diseased cells in intestinal mucosa, as well as photodynamic therapy. This light-controlled Ebot provides a new bio-microrobotic tool, with many new possibilities for biomedical task execution in narrow and complicated spaces where conventional tools are difficult to access due to the lack of deformability and bio-adaptability.

2.
Adv Sci (Weinh) ; 10(18): e2301365, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37012610

RESUMO

Contamination of nano-biothreats, such as viruses, mycoplasmas, and pathogenic bacteria, is widespread in cell cultures and greatly threatens many cell-based bio-analysis and biomanufacturing. However, non-invasive trapping and removal of such biothreats during cell culturing, particularly many precious cells, is of great challenge. Here, inspired by the wake-riding effect, a biocompatible opto-hydrodynamic diatombot (OHD) based on optical trapping navigated rotational diatom (Phaeodactylum tricornutum Bohlin) for non-invasive trapping and removal of nano-biothreats is reported. Combining the opto-hydrodynamic effect and optical trapping, this rotational OHD enables the trapping of bio-targets down to sub-100 nm. Different nano-biothreats, such as adenoviruses, pathogenic bacteria, and mycoplasmas, are first demonstrated to be effectively trapped and removed by the OHD, without affecting culturing cells including precious cells such as hippocampal neurons. The removal efficiency is greatly enhanced via reconfigurable OHD array construction. Importantly, these OHDs show remarkable antibacterial capability, and further facilitate targeted gene delivery. This OHD serves as a smart micro-robotic platform for effective trapping and active removal of nano-biothreats in bio-microenvironments, and especially for cell culturing of many precious cells, with great promises for benefiting cell-based bio-analysis and biomanufacturing.


Assuntos
Hidrodinâmica , Neurônios
3.
Nano Lett ; 22(1): 402-410, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34968073

RESUMO

Microsurgery and biopsies on individual cells in a cellular microenvironment are of great importance to better understand the fundamental cellular processes at subcellular and even single-molecular levels. However, it is still a big challenge for in situ surgery without interfering with neighboring living cells. Here, we report a thermoplasmonics combined optical trapping (TOT) technique for in situ single-cell surgery and intracellular organelle manipulation, without interfering with neighboring cells. A selective single-cell perforation was demonstrated via a localized thermoplasmonic effect, which facilitated further targeted gene delivery. Such a perforation was reversible, and the damaged membrane was capable of being repaired. Remarkably, a targeted extraction and precise manipulation of intracellular organelles were realized via the optical trapping. This TOT technique represents a new way for single-cell microsurgery, gene delivery, and intracellular organelle manipulation, and it provides a new insight for a deeper understanding of cellular processes as well as to reveal underlying causes of diseases associated with organelle malfunctions at a subcellular level.


Assuntos
Pinças Ópticas , Organelas
4.
Light Sci Appl ; 10(1): 124, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108445

RESUMO

The rapid development of biophotonics and biomedical sciences makes a high demand on photonic structures to be interfaced with biological systems that are capable of manipulating light at small scales for sensitive detection of biological signals and precise imaging of cellular structures. However, conventional photonic structures based on artificial materials (either inorganic or toxic organic) inevitably show incompatibility and invasiveness when interfacing with biological systems. The design of biophotonic probes from the abundant natural materials, particularly biological entities such as virus, cells and tissues, with the capability of multifunctional light manipulation at target sites greatly increases the biocompatibility and minimizes the invasiveness to biological microenvironment. In this review, advances in biophotonic probes for bio-detection and imaging are reviewed. We emphatically and systematically describe biological entities-based photonic probes that offer appropriate optical properties, biocompatibility, and biodegradability with different optical functions from light generation, to light transportation and light modulation. Three representative biophotonic probes, i.e., biological lasers, cell-based biophotonic waveguides and bio-microlenses, are reviewed with applications for bio-detection and imaging. Finally, perspectives on future opportunities and potential improvements of biophotonic probes are also provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA