Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 123(7): 257, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940835

RESUMO

As ecosystem disruptors and intermediate hosts for various parasites, freshwater snails have significant socioeconomic impacts on human health, livestock production, and aquaculture. Although traditional molluscicides have been widely used to mitigate these effects, their environmental impact has encouraged research into alternative, biologically based strategies to create safer, more effective molluscicides and diminish the susceptibility of snails to parasites. This review focuses on alterations in glucose metabolism in snails under the multifaceted stressors of parasitic infections, drug exposure, and environmental changes and proposes a novel approach for snail management. Key enzymes within the glycolytic pathway, such as hexokinase and pyruvate kinase; tricarboxylic acid (TCA) cycle; and electron transport chains, such as succinate dehydrogenase and cytochrome c oxidase, are innovative targets for molluscicide development. These targets can affect both snails and parasites and provide an important direction for parasitic disease prevention research. For the first time, this review summarises the reverse TCA cycle and alternative oxidase pathway, which are unique metabolic bypasses in invertebrates that have emerged as suitable targets for the formulation of low-toxicity molluscicides. Additionally, it highlights the importance of other metabolic pathways, including lactate, alanine, glycogenolysis, and pentose phosphate pathways, in snail energy supply, antioxidant stress responses, and drug evasion mechanisms. By analysing the alterations in key metabolic enzymes and their products in stressed snails, this review deepens our understanding of glucose metabolic alterations in snails and provides valuable insights for identifying new pharmacological targets.


Assuntos
Glucose , Moluscocidas , Caramujos , Animais , Moluscocidas/farmacologia , Caramujos/efeitos dos fármacos , Caramujos/metabolismo , Caramujos/parasitologia , Glucose/metabolismo , Água Doce
2.
Front Immunol ; 14: 1298416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259457

RESUMO

Context: Ma Xing Shi Gan Decoction (MXSGD) is a traditional remedy for treating lung injuries that was developed by the Typhoid and Fever School of Pharmaceutical Biology. It has antitussive and expectorant effects, anti-inflammatory, antiviral, regulates the body's immunity, etc. Aim: The aim of this study is to investigate whether MXSGD can ameliorate cyclosporine A (CsA)-induced hypoimmunity lung injury by regulating microflora metabolism. Methods: Establishment of a model for CsA-induced hypoimmunity lung injury. Using 16S rRNA high-throughput sequencing and LC-MS, the effects of MXSGD on gut flora and lung tissue microecology of mice with CsA-induced hypoimmunity were investigated. Results: MXSGD was able to preserve lung tissue morphology and structure, reduce serum inflammatory marker expression and protect against CsA-induced lung tissue damage. Compared to the model, MXSGD increased beneficial gut bacteria: Eubacterium ventriosum group and Eubacterium nodatum group; decreased intestinal pathogens: Rikenellaceae RC9 intestinal group; reduced the abundance of Chryseobacterium and Acinetobacter, promoted the production of Lactobacillus and Streptococcus, and then promoted the lung flora to produce short-chain fatty acids. MXSGD was able to enhance the expression of serum metabolites such as Americine, 2-hydroxyhexadecanoylcarnitine, Emetine, All-trans-decaprenyl diphosphate, Biliverdin-IX-alpha, Hordatin A and N-demethyl mifepristone in the CsA-induced hypoimmunity lung injury model. Conclusion: MXSGD can restore gut and lung microbiota diversity and serum metabolite changes to inhibit inflammation, ameliorate CsA-induced hypoimmunity lung injury.


Assuntos
Acinetobacter , Medicamentos de Ervas Chinesas , Síndromes de Imunodeficiência , Lesão Pulmonar , Animais , Camundongos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Ciclosporina , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA