Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 452: 139540, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38723570

RESUMO

Angiotensin-converting enzyme (ACE), consisting of N-domain and C-domain, is a key regulator of blood pressure. The use of cACE-specific inhibitors helps minimize side effects in clinical applications. Legumes are a good source of proteins containing ACE inhibitory peptides; however, no studies have reported the identification of cACE-specific inhibitory peptides from Fabaceae. In this study, thermal hydrolysates from seeds, sprouts, pods, seedlings, and flowers of legumes were analyzed. Flowers of legumes exhibited a C-domain-preference ACE inhibition and anti-hypertensive effect in rats. Screening the legume peptide library identified a novel cACE inhibitory peptide, SJ-1. This study reported the first identification of cACE inhibitory peptide from Fabaceae foods. SJ-1, identified from the legume flowers, interacted with active site residues of cACE, leading to the inhibition of ACE activity, downregulation of bradykinin levels, and reduction of blood pressure. These findings also suggested the potential of legume proteins as a source of cACE inhibitory peptides.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Fabaceae , Biblioteca de Peptídeos , Peptídeos , Peptidil Dipeptidase A , Proteínas de Plantas , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Fabaceae/química , Animais , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Ratos , Proteínas de Plantas/química , Masculino , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Humanos , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Ratos Sprague-Dawley
2.
Biomed Pharmacother ; 165: 115270, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37544280

RESUMO

Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model.


Assuntos
Lesões Encefálicas Traumáticas , Inibidores da Dipeptidil Peptidase IV , Camundongos , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Neurônios , Vildagliptina/farmacologia , Hipocampo , Neurogênese , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Cognição , Fosfato de Sitagliptina/farmacologia
3.
J Ethnopharmacol ; 315: 116687, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37244408

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Houttuynia cordata Thunb. (HC) is a traditional anti-pyretic herb that is classified as the lung meridian in traditional Chinese medicine. However, no articles have explored the main organs responsible for the anti-inflammatory activities of HC. AIM OF THE STUDY: The aim of the study was to investigate the meridian tropism theory of HC in lipopolysaccharide (LPS)-induced pyretic mice, as well as to identify the underlying mechanisms. MATERIALS AND METHODS: Transgenic mice carrying the luciferase gene driven by nuclear factor-κB (NF-κB) were intraperitoneally injected with LPS and orally administered standardized concentrated HC aqueous extract. The phytochemicals present in the HC extract were analyzed using high-performance liquid chromatography. In vivo and ex vivo luminescent imaging from transgenic mice was used to investigate the meridian tropism theory and anti-inflammatory effects of HC. Microarray analysis of gene expression patterns was used to elucidate the therapeutic mechanisms of HC. RESULTS: HC extract was found to contain phenolic acids, such as protocatechuic acid (4.52%) and chlorogenic acid (8.12%), as well as flavonoids like rutin (2.05%) and quercitrin (7.73%). The bioluminescent intensities induced by LPS in the heart, liver, respiratory system, and kidney were significantly suppressed by HC, while the maximal decrease (about 90% reduction) of induced luminescent intensity was observed in the upper respiratory tract. These data suggested that upper respiratory system might be the target for HC anti-inflammatory abilities. HC affected the processes involved in innate immunity, such as chemokine-mediated signaling pathway, inflammatory response, chemotaxis, neutrophil chemotaxis, and cellular response to interleukin-1 (IL-1). Moreover, HC significantly reduced the proportions of p65-stained cells and the amount of IL-1ß in trachea tissues. CONCLUSION: Bioluminescent imaging coupled with gene expression profile was used to demonstrate the organ selectivity, anti-inflammatory effects, and therapeutic mechanisms of HC. Our data demonstrated for the first time that HC displayed lung meridian-guiding effects and exhibited great anti-inflammatory potential in the upper respiratory tract. The NF-κB and IL-1ß pathways were associated with the anti-inflammatory mechanism of HC against LPS-provoked airway inflammation. Moreover, chlorogenic acid and quercitrin might be involved in the anti-inflammatory properties of HC.


Assuntos
Houttuynia , Camundongos , Animais , Houttuynia/química , NF-kappa B , Lipopolissacarídeos/toxicidade , Traqueia , Ácido Clorogênico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Camundongos Transgênicos
4.
Pharmaceutics ; 14(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35214098

RESUMO

Our previous studies have revealed the ultrasmall superparamagnetic iron oxide in the amine group USPIO-101 has an analgesic effect on inflammatory pain. Here, we further investigated its effect on the spinal cord and brain via electrophysiological and molecular methods. We used a mouse inflammatory pain model, induced by complete Freund's adjuvant (CFA), and measured pain thresholds via von Frey methods. We also investigated the effects of USPIO-101 via an extracellular electrophysiological recording at the spinal dorsal horn synapses and hippocampal Schaffer collateral-CA1 synapses, respectively. The mRNA expression of pro-inflammatory cytokines was detected by quantitative real-time polymerase chain reaction (RT-qPCR). Our results showed intrathecal USPIO-101 produces similar analgesic behavior in mice with chronic inflammatory pain via intrathecal or intraplantar administration. The potentiated low-frequency stimulation-induced spinal cord long-term potentiation (LTP) at the spinal cord superficial dorsal horn synapses could decrease via USPIO-101 in mice with chronic inflammatory pain. However, the mRNA expression of cyclooxygenase-2 was enhanced with lipopolysaccharide (LPS) stimulation in microglial cells, and we also found USPIO-101 at 30 µg/mL could decrease the magnitude of hippocampal LTP. These findings revealed that intrathecal USPIO-101 presented an analgesia effect at the spinal cord level, but had neurotoxicity risk at higher doses.

5.
Membranes (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436399

RESUMO

PT-2385 is currently regarded as a potent and selective inhibitor of hypoxia-inducible factor-2α (HIF-2α), with potential antineoplastic activity. However, the membrane ion channels changed by this compound are obscure, although it is reasonable to assume that the compound might act on surface membrane before entering the cell´s interior. In this study, we intended to explore whether it and related compounds make any adjustments to the plasmalemmal ionic currents of pituitary tumor (GH3) cells and human 13-06-MG glioma cells. Cell exposure to PT-2385 suppressed the peak or late amplitude of delayed-rectifier K+ current (IK(DR)) in a time- and concentration-dependent manner, with IC50 values of 8.1 or 2.2 µM, respectively, while the KD value in PT-2385-induced shortening in the slow component of IK(DR) inactivation was estimated to be 2.9 µM. The PT-2385-mediated block of IK(DR) in GH3 cells was little-affected by the further application of diazoxide, cilostazol, or sorafenib. Increasing PT-2385 concentrations shifted the steady-state inactivation curve of IK(DR) towards a more hyperpolarized potential, with no change in the gating charge of the current, and also prolonged the time-dependent recovery of the IK(DR) block. The hysteretic strength of IK(DR) elicited by upright or inverted isosceles-triangular ramp voltage was decreased during exposure to PT-2385; meanwhile, the activation energy involved in the gating of IK(DR) elicitation was noticeably raised in its presence. Alternatively, the presence of PT-2385 in human 13-06-MG glioma cells effectively decreased the amplitude of IK(DR). Considering all of the experimental results together, the effects of PT-2385 on ionic currents demonstrated herein could be non-canonical and tend to be upstream of the inhibition of HIF-2α. This action therefore probably contributes to down-streaming mechanisms through the changes that it or other structurally resemblant compounds lead to in the perturbations of the functional activities of pituitary cells or neoplastic astrocytes, in the case that in vivo observations occur.

6.
PLoS Biol ; 17(3): e2007097, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883547

RESUMO

Dietary restriction (DR; sometimes called calorie restriction) has profound beneficial effects on physiological, psychological, and behavioral outcomes in animals and in humans. We have explored the molecular mechanism of DR-induced memory enhancement and demonstrate that dietary tryptophan-a precursor amino acid for serotonin biosynthesis in the brain-and serotonin receptor 5-hydroxytryptamine receptor 6 (HTR6) are crucial in mediating this process. We show that HTR6 inactivation diminishes DR-induced neurological alterations, including reduced dendritic complexity, increased spine density, and enhanced long-term potentiation (LTP) in hippocampal neurons. Moreover, we find that HTR6-mediated mechanistic target of rapamycin complex 1 (mTORC1) signaling is involved in DR-induced memory improvement. Our results suggest that the HTR6-mediated mTORC1 pathway may function as a nutrient sensor in hippocampal neurons to couple memory performance to dietary intake.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Memória/fisiologia , Receptores de Serotonina/metabolismo , Ácido 3-Hidroxibutírico/sangue , Animais , Western Blotting , Corticosterona/sangue , Eletrofisiologia , Teste de Tolerância a Glucose , Hipocampo/citologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Receptores de Serotonina/genética , Serotonina/sangue , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Addict Biol ; 24(6): 1153-1166, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30276922

RESUMO

Orexins (also called hypocretins) are implicated in reward and addiction, but little is known about their role(s) in the association between hippocampal synaptic plasticity and drug preference. Previously, we found that exogenous orexin via OX1 and OX2 receptors can impair low frequency stimulation-induced depotentiation, i.e. restoring potentiation of excitatory synaptic transmission (re-potentiation) in mouse hippocampal slices. Here, we found this re-potentiation in hippocampal slices from mice that had acquired conditioned place preference (CPP) to cocaine. Both 10 and 20 mg/kg of cocaine induced similar magnitudes of CPP in mice and re-potentiation in their hippocampal slices, but differed in their susceptibility to TCS1102, a dual (OX1 and OX2 ) orexin receptor antagonist. TCS1102 significantly attenuated CPP and hippocampal re-potentiation induced by cocaine at 10 mg/kg but not at 20 mg/kg. Nonetheless, SCH23390, an antagonist of dopamine D1-like receptors (D1-likeRs), inhibited the effects induced by both doses of cocaine. SKF38393, a D1-likeR-selective agonist, also induced hippocampal re-potentiation in vitro. Interestingly, this effect was attenuated by TCS1102. Conversely, SCH23390 prevented orexin A-induced hippocampal re-potentiation. These results suggest that endogenous orexins are released in mice during cocaine-CPP acquisition, which sustains potentiated hippocampal transmission via OX1 /OX2 receptors and may contribute to the addiction memory of cocaine. This effect of endogenous orexins, however, may be substituted by dopamine that may dominate hippocampal re-potentiation and CPP via D1-likeRs when the reinforcing effect of cocaine is high.


Assuntos
Região CA1 Hipocampal/metabolismo , Cocaína/administração & dosagem , Condicionamento Clássico/fisiologia , Inibidores da Captação de Dopamina/administração & dosagem , Plasticidade Neuronal , Receptores de Orexina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Animais , Benzazepinas/farmacologia , Benzimidazóis/farmacologia , Benzoxazóis , Região CA1 Hipocampal/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Naftiridinas , Antagonistas dos Receptores de Orexina/farmacologia , Orexinas/farmacologia , Pirrolidinas/farmacologia , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/antagonistas & inibidores , Transmissão Sináptica , Ureia/análogos & derivados
8.
Eur J Pharmacol ; 827: 227-237, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29550337

RESUMO

Paeonol is a major constituent of the Chinese herb Moutan cortex radices. Recent studies report that paeonol has neuroprotective effects and improves impaired learning and memory. However, its underlying mechanisms by which paeonol contributes to synaptic transmission remain unclear. In this study, we found that paeonol increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs), but had no effect on the amplitude in rat hippocampal CA1 neurons. Similarly, the acetylcholinesterase (AChE) inhibitor rivastigmine increased the frequency of mEPSCs, but had no effect upon amplitude in rat hippocampal neurons. Rivastigmine also inhibited the delayed outward K+ currents in rat hippocampal CA1 neurons, but had no effect in nucleus ambiguus (NA) neurons. The Kv2 blocker guangxitoxin-1E increased the frequency of both mEPSCs and sEPSCs of rat hippocampal CA1 neurons, without affecting their amplitude. Our results suggest that paeonol and rivastigmine enhance spontaneous presynaptic transmitter release, which may be associated with the inhibition of the hippocampal Kv2 current and with therapeutic potential in neurotransmitter deficits found in Alzheimer's disease (AD). Moreover, our data also show that paeonol protects against Aß25-35-induced impairment of long-term potentiation (LTP) in mouse hippocampal neurons. However, guangxitoxin-1E failed to potentiate the evoked field excitatory postsynaptic potentials (fEPSPs), LTP and Aß25-35-induced impairment of LTP. These results indicate that paeonol may has the potential to improve learning and memory in AD. Interestingly, this effect is not involved in the inhibition of the hippocampal Kv2 current.


Assuntos
Acetofenonas/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Canais de Potássio Shab/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
9.
J Biomed Sci ; 24(1): 69, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877723

RESUMO

BACKGROUND: Long-term potentiation (LTP) is well recognized as a cellular-correlated synaptic plasticity of learning and memory. However, its reversal forms of synaptic plasticity, depotentiation, is less studied and its association with behaviors is also far from clear. Previously, we have shown that nanomolar orexin A can prevent the depotentiation induced by low frequency stimulation (LFS) following theta burst stimulation-induced LTP, namely inducing re-potentiation, at hippocampal CA1 synapses in vitro. Here, we explored the functional correlate of this orexin-mediated hippocampal re-potentiation. METHODS AND RESULTS: We found that intraperitoneal (i.p.) injection process-paired contextual exposures during the conditioned place preference (CPP) task in mice resulted in re-potentiation at CA1 synapses of hippocampal slices, regardless of whether the CPP behavior is expressed or not. Simply exposing the mouse in the CPP apparatus, or giving the mouse consecutive i.p. injections of saline in its home cage or a novel cage did not lead to hippocampal re-potentiation. Besides, this CPP training process-induced hippocampal re-potentiation was prevented when mice were pretreated with TCS1102, a dual orexin receptor antagonist. These results suggest that the expression of hippocampal re-potentiation is orexin-dependent and requires the association of differential spatial contexts and i.p. injections in the CPP apparatus. CONCLUSIONS: Together, we reveal an unprecedentedly orexin-mediated modulation on hippocampal depotentiation by the training process in the CPP paradigm.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Orexinas/metabolismo , Animais , Condicionamento Clássico , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Nat Commun ; 7: 12199, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27448020

RESUMO

Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-ß-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP.


Assuntos
Cocaína/efeitos adversos , Neurônios Dopaminérgicos/metabolismo , Endocanabinoides/metabolismo , Inibição Neural , Orexinas/metabolismo , Restrição Física , Estresse Fisiológico , Potenciais de Ação/efeitos dos fármacos , Animais , Ácidos Araquidônicos/metabolismo , Condicionamento Clássico , Neurônios Dopaminérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Glicerídeos/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Inibição Neural/efeitos dos fármacos , Receptores de Orexina/metabolismo , Ratos Wistar , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Neuropharmacology ; 107: 168-180, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26965217

RESUMO

The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Orexinas/metabolismo , Adenilil Ciclases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neurotransmissores/farmacologia , Receptores de Orexina/metabolismo , Orexinas/administração & dosagem , Receptor A1 de Adenosina/metabolismo , Receptor de Glutamato Metabotrópico 5/agonistas , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultura de Tecidos , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
12.
Neurotoxicology ; 31(1): 26-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19958791

RESUMO

This study sought to determine the effects of (+) methamphetamine (METH) and its ring-substituted analog (+/-)3,4-methylenedioxymethamphetamine (MDMA; ecstasy) on electrophysiological behavior and their relationships to second messenger systems in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. Extracellular application of MDMA at 1mM and METH at 3mM elicited action potential bursts that were not blocked after immersing the neurons in Ca(2+)-free solution. Notably, MDMA- (1mM) elicited action potential bursts were blocked by pretreatment with the protein kinase C (PKC) inhibitors chelerythrine (20 microM) and Ro 31-8220 (20 microM), but not by the PKA inhibitors KT-5720 (10 microM) and H89 (10 microM). The PKC activator phorbol 12,13-dibutyrate (PDBu; 3 microM), but not the PKA activator forskolin (50 microM), facilitated the induction of bursts elicited by MDMA at a lower concentration (0.3mM). In contrast, METH- (3mM) elicited action potential bursts were blocked by pretreatment with KT-5720 (10 microM) and H89 (10 microM), but not by chelerythrine (20 microM) and Ro 31-8220 (20 microM). Forskolin (50 microM), but not PDBu (3 microM) facilitated the induction of bursts elicited by METH at a lower concentration (1mM). Tetraethylammonium chloride (TEA), a blocker of the delayed rectifying K(+) current (I(KD)), did not elicit bursts at a concentration of 5mM but did facilitate the induction of action potential bursts elicited by both METH and MDMA. Voltage clamp studies revealed that both METH and MDMA decreased the TEA-sensitive I(KD) of the RP4 neuron. Forskolin (50 microM) or dibutyryl cAMP (1mM), a membrane-permeable cAMP analog, alone did not elicit action potential bursts. However, co-administration with forskolin (50 microM) and TEA (5mM) or co-administration with dibutyryl cAMP (1mM) and TEA (50mM) elicited action potential bursts in the presence of the PKC inhibitor chelerythrine (20 microM). Similarly, PDBu (10 microM) or phorbol 12-myristate 13-acetate (PMA; 3 microM) alone did not elicit action potential bursts. However, co-administration with PDBu (10 microM) and TEA (5mM) or co-administration with PMA (3 microM) and TEA (5mM) elicited action potential bursts in the presence of the PKA inhibitor KT-5720 (10 microM). These data suggest that action potential bursts in the RP4 neuron were not due to Ca(2+)-dependent synaptic effects. Rather, action potential bursts may be elicited through (1) combined activation of the cAMP-PKA signaling pathway and inhibition of the I(KD) and (2) combined activation of PKC and inhibition of the I(KD).


Assuntos
Potenciais de Ação/efeitos dos fármacos , Adrenérgicos/farmacologia , Gânglios dos Invertebrados/citologia , Metanfetamina/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Neurônios/efeitos dos fármacos , Animais , Biofísica , Cálcio/metabolismo , Colforsina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Técnicas de Patch-Clamp/métodos , Dibutirato de 12,13-Forbol/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Caramujos/anatomia & histologia , Tetraetilamônio/farmacologia
13.
J Formos Med Assoc ; 108(9): 683-93, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19773206

RESUMO

BACKGROUND/PURPOSE: The electropharmacological effect of arsenic trioxide (As2O3) is unknown. The present study investigated the effects of As2O3 on spontaneous neuronal impulse activity. METHODS: Intracellular recordings and the two-electrode voltage clamp method were used to study the effect of As2O3 on the RP4 neuron, the number 4 neuron in the right partial ganglion of the giant African snail (Achatina fulica Ferussac). RESULTS: The RP4 neuron generated spontaneous action potentials, which were affected by As2O3 in a concentration-dependent manner. Extracellular application of 1 or 3 mM As2O3 decreased the frequency of spontaneously generated action potentials. At 10 mM, As2O3 first depolarized and then elicited irreversible bursts of potential (BoPs) at 60 minutes after administration. At 30 mM, As2O3 depolarized the resting membrane potential and abolished the spontaneous action potentials. The BoPs elicited by 10mM As2O3 were blocked when neurons were pretreated with phospholipase C (PLC) inhibitors (10 microM U73122 or 3mM neomycin). The BoPs elicited by As2O3 remained unchanged in the presence of KT5720, verapamil, or calcium replacement solution. Voltage-clamp studies revealed that 10mM As2O3 decreased the fast inward current and had no effect on the steady-state outward current of the neuron. CONCLUSION: As2O3 at 10 mM elicits BoPs in central snail neurons and this effect may relate to the PLC activity of the neuron, rather than protein kinase A activity, or calcium influxes of the neuron. As2O3 at higher concentration irreversibly abolishes the spontaneous action potentials of the neuron.


Assuntos
Antineoplásicos/toxicidade , Neurônios/efeitos dos fármacos , Óxidos/toxicidade , Potenciais de Ação/efeitos dos fármacos , Animais , Trióxido de Arsênio , Arsenicais , Carbazóis/farmacologia , Estrenos/farmacologia , Neomicina/farmacologia , Neurônios/fisiologia , Pirróis/farmacologia , Pirrolidinonas/farmacologia , Caramujos , Fosfolipases Tipo C/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...