Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646758

RESUMO

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Assuntos
Oryza , Rios , Solo , Áreas Alagadas , Solo/química , China , Rios/química , Oryza/crescimento & desenvolvimento , Oryza/química , Monitoramento Ambiental , Agricultura/métodos , Fósforo/análise , Fósforo/química , Carbono/análise , Carbono/química
2.
Opt Express ; 32(5): 7342-7355, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439417

RESUMO

Coherent superposition has been proposed to synthesize high-order quadrature amplitude modulation (QAM) by coherently superposing low-order QAMs in the optical domain. These approaches could effectively relax the digital-to-analog converter resolution and reduce the complexity of the driving electronics. However, in the superposition process, imperfect phase rotations (IPRs) in low-order QAMs will be transferred to the resultant high-order QAM. Importantly, the induced IPR cannot be compensated for by conventional linear equalizers and carrier recovery methods. To combat the induced IPR, herein, we propose a hierarchical blind phase search (HBPS) algorithm to compensate for the IPRs in synthesized high-order QAMs. The proposed HBPS can match the generation mechanism of the IPRs in coherent superposition, by tracing back and estimating the IPR in the QPSK-like constellation of each hierarchy and finally correcting the induced IPRs. Simulation and experimental results verify that this algorithm could effectively compensate for the IPR in the resultant 16-QAMs synthesized using coherent superposition approaches. The proposed HBPS shows significant optical signal-to-noise ratio (OSNR) gains compared to the conventional blind phase search (BPS) method for high-order QAMs coherently superposed using optical signal processing (OSP) and tandem modulators (TMs). Specifically, at the BER of 2.4e-2, the HBPS achieves a 1.5-dB OSNR sensitivity enhancement over the BPS in either OSP or TMs-based schemes, even with an imperfection rotation of up to 20∘.

3.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

4.
Nano Lett ; 23(20): 9547-9554, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816225

RESUMO

Exploring ultrafast carrier dynamics is crucial for the materials' fundamental properties and device design. In this work, we employ time- and energy-resolved photoemission electron microscopy with tunable pump wavelengths from visible to near-infrared to reveal the ultrafast carrier dynamics of the elemental semiconductor tellurium. We find that two discrete sub-bands around the Γ point of the conduction band are involved in excited-state electron ultrafast relaxation and reveal that hot electrons first go through ultrafast intra sub-band cooling on a time scale of about 0.3 ps and then transfer from the higher sub-band to the lower one on a time scale of approximately 1 ps. Additionally, theoretical calculations reveal that the lower one has flat-band characteristics, possessing a large density of states and a long electron lifetime. Our work demonstrates that TR- and ER-PEEM with broad tunable pump wavelengths are powerful techniques in revealing the details of ultrafast carrier dynamics in time and energy domains.

5.
Nat Commun ; 14(1): 4837, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563183

RESUMO

Low-loss dielectric modes are important features and functional bases of fundamental optical components in on-chip optical devices. However, dielectric near-field modes are challenging to reveal with high spatiotemporal resolution and fast direct imaging. Herein, we present a method to address this issue by applying time-resolved photoemission electron microscopy to a low-dimensional wide-bandgap semiconductor, hexagonal boron nitride (hBN). Taking a low-loss dielectric planar waveguide as a fundamental structure, static vector near-field vortices with different topological charges and the spatiotemporal evolution of waveguide modes are directly revealed. With the lowest-order vortex structure, strong nanofocusing in real space is realized, while near-vertical photoemission in momentum space and narrow spread in energy space are simultaneously observed due to the atomically flat surface of hBN and the small photoemission horizon set by the limited photon energies. Our approach provides a strategy for the realization of flat photoemission emitters.

6.
Ear Nose Throat J ; : 1455613231183537, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394781

RESUMO

Spontaneous otogenic pneumocephalus (SOP) is a rare condition. We report a case of SOP that may be related to repeated Valsalva maneuvers. A young woman underwent repeated Valsalva maneuvers to restore Eustachian tube function and subsequently developed symptoms that included otalgia, headache, and nausea. A temporal bone computed tomography scan was performed and a diagnosis of SOP was made. Subsequent surgical treatment was performed and no recurrence was found during the 1-year follow-up period. The rarity of SOP and its potential for misdiagnosis pose significant challenges in clinical practice. The Valsalva maneuver is 1 of the contributing factors to this phenomenon. Otologists should be familiar with the potential complications of the Valsalva maneuver and use it with greater caution.

7.
Adv Mater ; 35(33): e2301114, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314026

RESUMO

Colloidal perovskite nanocrystals (PNCs) display bright luminescence for light-emitting diode (LED) applications; however, they require post-synthesis ligand exchange that may cause surface degradation and defect formation. In situ-formed PNCs achieve improved surface passivation using a straightforward synthetic approach, but their LED performance at the green wavelength is not yet comparable with that of colloidal PNC devices. Here, it is found that the limitations of in situ-formed PNCs stem from uncontrolled formation kinetics: conventional surface ligands confine perovskite nuclei but fail to delay crystal growth. A bifunctional carboxylic-acid-containing ammonium hydrobromide ligand that separates crystal growth from nucleation is introduced, leading to the formation of quantum-confined PNC solids exhibiting a narrow size distribution. Controlled crystallization is further coupled with defect passivation using deprotonated phosphinates, enabling improvements in photoluminescence quantum yield to near unity. Green LEDs are fabricated with a maximum current efficiency of 109 cd A-1 and an average external quantum efficiency of 22.5% across 25 devices, exceeding the performance of their colloidal PNC-based counterparts. A 45.6 h operating half-time is further documented for an unencapsulated device in N2 with an initial brightness of 100 cd m-2 .

8.
Nanotechnology ; 34(24)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36893457

RESUMO

Efficient manipulation of the emission direction of a chiral nanoscale light source is significant for information transmission and on-chip information processing. Here, we propose a scheme to control the directionality of nanoscale chiral light sources based on gap plasmons. The gap plasmon mode formed by a gold nanorod and a silver nanowire realizes the highly directional emission of chiral light sources. Based on the optical spin-locked light propagation, the hybrid structure enables the directional coupling of chiral emission to achieve a contrast ratio of 99.5%. The emission direction can be manipulated by tailoring the configuration of the structure, such as the positions, aspect ratios, and orientation of the nanorod. Besides, a great local field enhancement exists for highly enhanced emission rates within the nanogap. This chiral nanoscale light source manipulation scheme provides a way for chiral valleytronics and integrated photonics.

9.
Am J Otolaryngol ; 44(2): 103733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36527815

RESUMO

OBJECTIVE: To evaluate the diagnostic value of narrow band imaging (NBI) endoscopic classification for hypopharyngeal lesions and to lay the groundwork for practical applications of oxygen-injected laryngoscope for hypopharyngeal carcinoma (HC). METHODS: A total of 140 subjects with suspected 146 hypopharyngeal lesions were selected for pathological examination. Subsequently, NBI and white light imaging (WLI) endoscopy were performed to observe and classify lesions into 7 types according to our modified NBI classification. Pathological results were used as the gold standard to assess the diagnostic value of the NBI classification. The value of oxygen-injected laryngoscope for accurate assessment of lesion extension was evaluated based on the exposure of hypopharyngeal lesions before and after use. RESULTS: The accuracy, sensitivity, and negative predictive value of NBI endoscopy in diagnosing hypopharyngeal lesions were 95.9 %, 96.7 %, and 84.6 %, respectively, which were higher than those of WLI mode (p < 0.05). NBI endoscopy was more accurate than WLI in diagnosing malignant lesions (p < 0.05), especially for high-grade dysplasia (HGD) (p < 0.05). There was remarkable consistency between NBI classification and pathological results (Kappa = 0.855). Type Va and type Vb-c accounted for 72.7 % and 92.8 % of HGD and invasive carcinoma, respectively. Moreover, the oxygen-injected laryngoscope was found to provide a more accurate assessment of HC extension (P < 0.001). CONCLUSION: We propose a more appropriate NBI endoscopic classification for hypopharyngeal lesions, which can effectively improve diagnostic accuracy, especially for the early diagnosis of hypopharyngeal cancer. Moreover, the application of oxygen-injected laryngoscope is essential for the accurate assessment of HC and has a high clinical utility.


Assuntos
Neoplasias Hipofaríngeas , Humanos , Neoplasias Hipofaríngeas/diagnóstico por imagem , Imagem de Banda Estreita/métodos , Detecção Precoce de Câncer , Endoscopia/métodos , Valor Preditivo dos Testes , Sensibilidade e Especificidade
10.
Opt Express ; 30(18): 32577-32589, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242315

RESUMO

An optical format interconversion scheme between on-off keying (OOK) and quadrature phase shift keying (QPSK) is proposed and verified in this paper. The conversion system mainly consists of a coherent vector combiner and a reconfigurable two-dimensional (2D) vector mover. As a key element of the proposed conversion system, the 2D vector mover is implemented by a non-degenerate phase-sensitive amplifier (PSA). The operating principle and theoretical derivations of the PSA-based 2D vector mover are fully introduced. The reconfigurable transfer characteristics of the vector mover are analyzed under different parameter settings to exhibit the flexible 2D moving function. The signal constellations, eye diagrams, spectrum, error vector magnitudes, and bit error ratios are estimated and depicted to validate the proposed idea. With the input signal-to-noise ratios of 20 dB and 25 dB, error-free conversions are achieved between 50G Baud OOK and QPSK. The scheme proposed in this paper fills the lack of the one-to-one interconversion between OOK and QPSK, and has potential applications in optical interconnect nodes, across-dimensional optical transmissions, and flexible optical transceivers.

11.
Opt Express ; 30(21): 38077-38094, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258380

RESUMO

A silicon waveguide with reverse-biased p-i-n junction is used to experimentally demonstrate all-optical regeneration of non-return-to-zero (NRZ) on-off keying (OOK) signal based on four-wave mixing. The silicon waveguide allows a high conversion efficiency of -12 dB. The 0.22 dB (1.1 dB) quality (Q) factor and 0.74 dB (6.3 dB) extinction ratio (ER) improvements on average are achieved for 100 Gb/s (50 Gb/s) NRZ OOK signal regeneration at different receiving powers via the optimal match between the input signal optical power and input-output transfer curve. To the best of our knowledge, this silicon-based all-optical regenerator exhibits superior regeneration performance, including large ER and Q factor improvements, and the highest regeneration speed of NRZ OOK signal, and it has wide applications in 5 G/6 G networks.

12.
Nano Lett ; 22(21): 8728-8734, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314894

RESUMO

The artificial engineering of photoresponse is crucial for optoelectronic applications, especially for photodetectors. Here, we designed and fabricated a metasurface on a semimetallic Cd3As2 nanoplate to improve its thermoelectric photoresponse. The metasurface can enhance light absorption, resulting in a temperature gradient. This temperature gradient can contribute to thermoelectric photoresponse through the photothermoelectric effect. Furthermore, power-dependent measurements showed a linearly dependent photoresponse of the Cd3As2 metasurface device, indicating a second-order photocurrent response. Wavelength-dependent measurements showed that the metasurface can efficiently separate photoexcited carriers in the broadband range of 488 nm to 4 µm. The photoresponse near the metasurface boundaries exhibits a responsivity of ∼1 mA/W, which is higher than that near the electrode junctions. Moreover, the designed metasurface device provided an anisotropic polarization-dependent photoresponse rather than the isotropic photoresponse of the original Cd3As2 device. This study demonstrates that metasurfaces have excellent potential for artificial controllable photothermoelectric photoresponse of various semimetallic materials.

13.
Phys Rev Lett ; 129(12): 127401, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179197

RESUMO

Dynamically encircling exceptional points (EPs) have unveiled intriguing chiral dynamics in photonics. However, the traditional approach based on an open manifold of Hamiltonian parameter space fails to explore trajectories that pass through an infinite boundary. Here, by mapping the full parameter space onto a closed manifold of the Riemann sphere, we introduce a framework to describe encircling-EP loops. We demonstrate that an encircling trajectory crossing the north vertex can realize near-unity asymmetric transmission. An efficient gain-free, broadband asymmetric polarization-locked device is realized by mapping the encircling path onto L-shaped silicon waveguides.

14.
Ear Nose Throat J ; : 1455613221119071, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36000487

RESUMO

Lipoid proteinosis (LP) is a rare inherited multisystem disease. Classical clinical features include beaded eyelid papules, laryngeal infiltration, and neurological symptoms. Here, we report the diagnosis and treatment of a female patient with LP in order to improve physician awareness and understanding of this disease.

15.
Opt Express ; 30(2): 1885-1895, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209341

RESUMO

Efficient electro-optic (EO) modulation can be generated in the hybrid silicon modulator with EO polymer in the form of an in-plane coplanar waveguide and electrode structure. Strong confinement of the optical field in the hybrid structure is critical to performing efficient electric poling and modulation of the EO polymer. The waveguide consists of silica-based side claddings and an EO core for increasing the integral of the optical field and the overlap interaction between the optical field and the modulated electric field within the EO polymer. We discuss in detail the volume resistivity dependence of the efficiency of electric poling and modulation for various side-cladding materials. In a Mach-Zehnder interferometer modulator, the measured half-wave-voltage length product (VπL) is 1.9 V·cm at an optical communication wavelength of 1,550 nm under the TE optical mode operation. The high-speed signaling of the device is demonstrated by generating on-off-keying transmission at signal rates up to 52 Gbit/s with a Q factor of 6.1 at a drive voltage of 2.0 Vpp.

16.
Ear Nose Throat J ; 101(8): NP348-NP350, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33155846

RESUMO

Extramedullary plasmacytoma (EMP) is a malignant tumor formed by monoclonal abnormal proliferation of plasma cells, which is mainly characterized by localized masses and very rare in the larynx, particularly in the false vocal cord. We present a larynx EMP that arises from the false cord without systematic involvement. After surgical resection, the patient received adjuvant radiotherapy and was recurrence-free during the 8-month follow-up.


Assuntos
Neoplasias Laríngeas , Laringe , Plasmocitoma , Humanos , Neoplasias Laríngeas/patologia , Laringe/patologia , Plasmocitoma/diagnóstico , Plasmocitoma/patologia , Radioterapia Adjuvante , Prega Vocal/patologia
17.
Bioorg Chem ; 119: 105558, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34922090

RESUMO

Cysteine (Cys), the only amino acid in the 20 natural amino acids that contains a reduced sulfhydryl group, plays important roles in the balance of redox homeostasis in biological systems. Lysosome is an important organelle containing a variety of hydrolases and has been proved to be the decomposition center of a variety of exogenous and endogenous macromolecular substances. In this research, a coumarin-based fluorescent probe MCA for the detection of Cys in lysosomes of living cells was developed. Due to the acrylate moiety, this probe exhibited high sensitivity (detection limit = 6.8 nM) and selectivity towards Cys superior to other analytes. Moreover, the probe was proved to be lysosome-targetable and showed good cell imaging ability and low cell toxicity.


Assuntos
Cumarínicos/química , Cisteína/análise , Corantes Fluorescentes/química , Sobrevivência Celular/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Lisossomos/química , Estrutura Molecular , Imagem Óptica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Adv Mater ; 33(25): e2100775, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33987871

RESUMO

Perovskite microcavities have excellent photophysical properties for integrated optoelectronic devices, such as nanolasers. Imaging and controlling the photonic modes within the cavity are fundamentally important to understand and develop applications. Here, photoemission electron microscopy (PEEM) is used to image the photonic modes within optical microcavities with a nanometer-scale spatial resolution. From a CsPbBr3 microcavity, hybrid mode patterns are observed. Spatial frequency spectrum analysis on the patterns uncovers the characteristic cavity modes, which are modeled with transverse magnetic (TM) and transverse electric (TE) waves, and assigned to exciton-polariton modes. Based on this understanding, the light focus in a designed microcavity is imaged in real space and controlled by the light field polarization. The study confirms that the cavity modes in perovskites can be effectively observed by the PEEM technique under resonant excitation, which, in turn, promotes the design of optoelectronic devices based on perovskite microcavities.

19.
Opt Lett ; 46(7): 1628-1631, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793512

RESUMO

Small all-optical devices are central to the optical computing. Plasmonic digital encoders (PDEs) with a featured dimension of ∼1µm hold the key for transferring information from far field to photonic processing systems. Here we propose a PDE design composed of two gold nanorods (AuNRs), whose pattern represents 2-bit digital information. We implanted information into the spectral phase of a femtosecond pulse by pulse shaping and controlled the two-photon photoluminescence pattern of an AuNR pair. The high contrast ratios were achieved with 13.01 and 6.02 dB for binary codes "1-0" and "0-1", respectively.

20.
Nano Lett ; 21(7): 2932-2938, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759535

RESUMO

For versatile lead-halide perovskite materials, their trap states, both in the bulk and at the surface, significantly influence optoelectronic behaviors and the performance of the materials and devices. Direct observation of the trap dynamics at the nanoscale is necessary to understand and improve the device design. In this report, we combined the femtosecond pump-probe technique and photoemission electron microscopy (PEEM) to investigate the trap states of an inorganic perovskite CsPbBr3 single-crystal microplate with spatial-temporal-energetic resolving capabilities. Several shallow trap sites were identified within the microplate, while the deep traps were resolved throughout the surface. The results revealed high-defect tolerance to the shallow traps, while the surface dynamics were dominated by the surface deep traps. The ultrafast PEEM disclosed a full landscape of fast electron transfer and accumulation of the surface trap states. These discoveries proved the excellent electronic properties of perovskite materials and the importance of surface optimization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...