Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 107, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38697972

RESUMO

Cholangiocarcinoma (CCA) is a highly malignant biliary tract cancer with currently suboptimal diagnostic and prognostic approaches. We present a novel system to monitor CCA using exosomal circular RNA (circRNA) via serum and biliary liquid biopsies. A pilot cohort consisting of patients with CCA-induced biliary obstruction (CCA-BO, n = 5) and benign biliary obstruction (BBO, n = 5) was used to identify CCA-derived exosomal circRNAs through microarray analysis. This was followed by a discovery cohort (n = 20) to further reveal a CCA-specific circRNA complex (hsa-circ-0000367, hsa-circ-0021647, and hsa-circ-0000288) in both bile and serum exosomes. In vitro and in vivo studies revealed the three circRNAs as promoters of CCA invasiveness. Diagnostic and prognostic models were established and verified by two independent cohorts (training cohort, n = 184; validation cohort, n = 105). An interpreter-free diagnostic model disclosed the diagnostic power of biliary exosomal circRNA signature (Bile-DS, AUROC = 0.947, RR = 6.05) and serum exosomal circRNA signature (Serum-DS, AUROC = 0.861, RR = 4.04) compared with conventional CA19-9 (AUROC = 0.759, RR = 2.08). A prognostic model of CCA undergoing curative-intent surgery was established by calculating early recurrence score, verified with bile samples (Bile-ERS, C-index=0.783) and serum samples (Serum-ERS, C-index = 0.782). These models, combined with other prognostic factors revealed by COX-PH model, enabled the establishment of nomograms for recurrence monitoring of CCA. Our study demonstrates that the exosomal triple-circRNA panel identified in both bile and serum samples serves as a novel diagnostic and prognostic tool for the clinical management of CCA.


Assuntos
Colangiocarcinoma , Exossomos , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/sangue , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Colangiocarcinoma/patologia , Exossomos/genética , Masculino , Feminino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Pessoa de Meia-Idade , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/sangue , Neoplasias dos Ductos Biliares/patologia , Prognóstico , Colestase/genética , Colestase/diagnóstico , Colestase/sangue
2.
Adv Mater ; : e2312341, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567889

RESUMO

Noncentrosymmetric transition metal dichalcogenide (TMD) monolayers offer a fertile platform for exploring unconventional Ising superconductivity (SC) and charge density waves (CDWs). However, the vulnerability of isolated monolayers to structural disorder and environmental oxidation often degrade their electronic coherence. Herein, an alternative approach is reported for fabricating stable and intrinsic monolayers of 1H-TaS2 sandwiched between SnS blocks in a (SnS)1.15TaS2 van der Waals (vdW) superlattice. The SnS block layers not only decouple individual 1H-TaS2 sublayers to endow them with monolayer-like electronic characteristics, but also protect the 1H-TaS2 layers from electronic degradation. The results reveal the characteristic 3 × 3 CDW order in 1H-TaS2 sublayers associated with electronic rearrangement in the low-lying sulfur p band, which uncovers a previously undiscovered CDW mechanism rather than the conventional Fermi surface-related framework. Additionally, the (SnS)1.15TaS2 superlattice exhibits a strongly enhanced Ising-like SC with a layer-independent Tc of ≈3.0 K, comparable to that of the isolated monolayer 1H-TaS2 sample, presumably attributed to their monolayer-like characteristics and retained Fermi states. These results provide new insights into the long-debated CDW order and enhanced SC of monolayer 1H-TaS2, establishing bulk vdW superlattices as promising platforms for investigating exotic collective quantum phases in the 2D limit.

3.
Small ; : e2311817, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461534

RESUMO

The atomically dispersed Fe-N4 active site presents enormous potential for various renewable energy conversions. Despite its already remarkable catalytic performance, the local atomic microenvironment of each Fe atom can be regulated to further enhance its efficiency. Herein, a novel conceptual strategy that utilizes a simple salt-template polymerization method to simultaneously adjust the first coordination shell (Fe-N3 S1 ) and second coordination shell (C-S-C, a structure similar to thiophene) of Fe-N4 isolated atoms is proposed. Theoretical studies suggest that this approach can redistribute charge density in the MN4 moiety, lowering the d-band center of the metal site. This weakens the binding of oxygenated intermediates, enhancing oxygen reduction reaction (ORR) activity when compared to only implementing coordination shell regulation. Based on the above discovery, a single Fe atom electrocatalyst with the optimal Fe-N3 S1 -S active moiety incorporated in nitrogen, sulfur co-doped graphene (Fe-SAc/NSG) is designed and synthesized. The Fe-SAc/NSG catalyst exhibits excellent alkaline ORR activity, exceeding benchmark Pt/C and most Fe-SAc ORR electrocatalysts, as well as superior stability in Zn-air battery. This work aims to pave the way for creating highly active single metal atom catalysts through the localized regulation of their atomic structure.

4.
Nat Chem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374456

RESUMO

Open-shell nanographenes exhibit unconventional π-magnetism arising from topological frustration or strong electron-electron interaction. However, conventional design approaches are typically limited to a single magnetic origin, which can restrict the number of correlated spins or the type of magnetic ordering in open-shell nanographenes. Here we present a design strategy that combines topological frustration and electron-electron interactions to fabricate a large fully fused 'butterfly'-shaped tetraradical nanographene on Au(111). We employ bond-resolved scanning tunnelling microscopy and spin-excitation spectroscopy to resolve the molecular backbone and reveal the strongly correlated open-shell character, respectively. This nanographene contains four unpaired electrons with both ferromagnetic and anti-ferromagnetic interactions, harbouring a many-body singlet ground state and strong multi-spin entanglement, which is well described by many-body calculations. Furthermore, we study the magnetic properties and spin states in the nanographene using a nickelocene magnetic probe. The ability to imprint and characterize many-body strongly correlated spins in polyradical nanographenes paves the way for future advancements in quantum information technologies.

5.
Int J Biol Macromol ; 263(Pt 1): 130190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360247

RESUMO

Injectable materials have attracted great attention in the manufacture of in situ forming hydrogels for biomedical applications. In this study, a facile method to prepare methacrylic anhydride (MA)-modified sodium carboxymethyl cellulose (CMC) as an injectable material for the fabrication of hydrogels with controllable properties is reported. The chemical structure of the series of MA-grafted CMC (CMCMAs) with different MA contents was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopy, and the properties of CMCMAs were characterized. Then, the CMCMAs gel (CMCMAs-G) was fabricated by crosslinking of MA under blue light irradiation. The gelation performances, swelling behaviors, transmittance, surface porous structures and mechanical properties of CMCMAs-G can be controlled by varying the content of MA grafted on the CMC. The compressive strength of CMCMAs-G was measured by mechanical compressibility tests and up to 180 kPa. Furthermore, the in vitro cytocompatibility evaluation results suggest that the obtained CMCMAs-G exhibit good compatibility for cell proliferation. Hence, our strategy provides a facile approach for the preparation of light-sensitive and an injectable CMC-derived polymer to fabricate hydrogels for biomedical applications.


Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Hidrogéis/química , Carboximetilcelulose Sódica/química , Metacrilatos , Espectroscopia de Ressonância Magnética , Sódio
6.
Oncogene ; 43(14): 1050-1062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374407

RESUMO

In a previous study, we discovered that the level of lnc-TSPAN12 was significantly elevated in hepatocellular carcinoma (HCC) and correlated with a low survival rate. However, the function and mechanism of lnc-TSPAN12 in modulating epithelial-mesenchymal transition (EMT) and metastasis in HCC remains poorly understood. This study demonstrates that lnc-TSPAN12 positively influences migration, invasion, and EMT of HCC cells in vitro and promotes hepatic metastasis in vivo. The modification of N6-methyladenosine, driven by METTL3, is essential for the stability of lnc-TSPAN12, which may partially contribute to the upregulation of lnc-TSPAN12. Mechanistically, lnc-TSPAN12 exhibits direct interactions with EIF3I and SENP1, acting as a scaffold to enhance the SENP1-EIF3I interaction. As a result, the SUMOylation of EIF3I is inhibited, preventing its ubiquitin-mediated degradation. Ultimately, this activates the Wnt/ß-catenin signaling pathway, stimulating EMT and metastasis in HCC. Our findings shed light on the regulatory mechanism of lnc-TSPAN12 in HCC metastasis and identify the lnc-TSPAN12-EIF3I/SENP1 axis as a novel therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Tetraspaninas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Transição Epitelial-Mesenquimal , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Longo não Codificante/genética , Via de Sinalização Wnt
7.
Adv Mater ; 36(5): e2307991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37757786

RESUMO

Ultra-high-density single-atom catalysts (UHD-SACs) present unique opportunities for harnessing cooperative effects between neighboring metal centers. However, the lack of tools to establish correlations between the density, types, and arrangements of isolated metal atoms and the support surface properties hinders efforts to engineer advanced material architectures. Here, this work precisely describes the metal center organization in various mono- and multimetallic UHD-SACs based on nitrogen-doped carbon (NC) supports by coupling transmission electron microscopy with tailored machine-learning methods (released as a user-friendly web app) and density functional theory simulations. This approach quantifies the non-negligible presence of multimers with increasing atom density, characterizes the size and shape of these low-nuclearity clusters, and identifies surface atom density criteria to ensure isolation. Further, it provides previously inaccessible experimental insights into coordination site arrangements in the NC host, uncovering a repulsive interaction that influences the disordered distribution of metal centers in UHD-SACs. This observation holds in multimetallic systems, where chemically-specific analysis quantifies the degree of intermixing. These fundamental insights into the materials chemistry of single-atom catalysts are crucial for designing catalytic systems with superior reactivity.

8.
J Am Chem Soc ; 146(2): 1563-1571, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38141030

RESUMO

Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.

9.
Ann Surg Treat Res ; 105(5): 319-332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023434

RESUMO

Purpose: In the treatment of hilar cholangiocarcinoma (HCCA), combined resection of important hepatic vessels remains controversial. The purpose of this study was to compare the postoperative complications and prognosis of combined and non-combined major vessel resections in patients undergoing radical resection for HCCA. Methods: In this study, patients with HCCA who underwent curative resection between January 2007 and December 2018 were retrospectively enrolled. Postoperative complications and prognosis between the groups were compared using propensity score-matching (PSM) analysis. Results: There were 310 patients included in this study. The portal vein resection (PVR) and hepatic artery resection (HAR) groups had a higher incidence of postoperative complications than the control group. Patients in the HAR group had an increased risk of abdominal and pleural effusion after surgery. Patients who underwent combined PVR had better overall survival (OS; P = 0.020) and disease-free survival (DFS; P = 0.020). After curative-intent resection, patients in the HAR group had improved OS (P = 0.027) and DFS (P = 0.023). The postoperative complications of combined vascular resection (VR) did not worsen long-term survival for patients. Conclusion: In patients with HCCA, combined VR improved prognosis. The postoperative complications of combined VR do not worsen patient survival. Therefore, radical surgical resection is recommended.

10.
BMC Gastroenterol ; 23(1): 416, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017468

RESUMO

Traumatic neuroma (TN) is a disorganized proliferation of injured nerves arising from the axons and Schwann cells. Although TN rarely occurs in the abdominal cavity, the incidence of TN may be underestimated because of the large number of asymptomatic patients. TN can cause persistent pain, which seriously affects quality of life. TN of the biliary system can cause bile duct obstruction, leading to acute cholangitis. It is difficult to differentiate TN from malignancies or recurrence of malignancy, which results in a number of patients receiving aggressive treatment. We collected cases reports of intra-abdominal TN over the past 30 years form PubMed and cases diagnosed in our medical center over the past 20 years, which is the largest case series of intra-abdominal TN to the best of our knowledge. In this review, we discuss the epidemiology, pathophysiology, risk factors, classification, diagnosis, and management of intra-abdominal TN.


Assuntos
Cavidade Abdominal , Colestase , Neuroma , Humanos , Qualidade de Vida , Neuroma/diagnóstico , Neuroma/epidemiologia , Neuroma/etiologia , Colestase/etiologia , Cavidade Abdominal/patologia , Fatores de Risco
11.
Nano Lett ; 23(23): 10725-10730, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37988597

RESUMO

Hollow bimetallic nanoparticles (NPs) formed from metal oxide NP templates are widely used catalysts for hydrogen evolution and CO2 reduction reactions. Despite their importance in catalysis, the details of how these NPs form on the NP templates remain unclear. Here, using in situ liquid-phase transmission electron microscopy (TEM) imaging, we describe the conversion of Cu2O template NPs to hollow PdCu NPs. Our observations show that a polycrystalline PdCu shell forms on the surface of the template via a galvanic replacement reaction while the template undergoes anisotropic etching. This study provides important insights into the synthesis of hollow metallic nanostructures from metal oxide templates.

12.
ACS Nano ; 17(20): 20237-20245, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791737

RESUMO

The atomic doping of open-shell nanographenes enables precise tuning of their electronic and magnetic states, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that neutral centrally doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of π-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. Our study uncovers the correlation between the dopant position and the radical nature of high-spin nanographenes, providing a strategy for the design and development of these nanographenes for various applications.

13.
Nat Rev Chem ; 7(11): 754-767, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814032

RESUMO

Heterogeneous single-cluster catalysts (SCCs) comprising atomically precise and isolated metal clusters stabilized on appropriately chosen supports offer exciting prospects for enabling novel chemical reactions owing to their broad structural diversity with unparalled opportunities for engineering their properties. Although the pioneering work revealed intriguing performance trends of size-selected metal clusters deposited on supports, synthetic and analytical challenges hindered a thorough understanding of surface chemistry under realistic conditions. This Review underscores the importance of considering the cluster environment in SCCs, encompassing the development of robust metal-support interactions, precise control over the ligand sphere, the influence of reaction media and dynamic behaviour, to uncover new reactivities. Through examples, we illustrate the criticality of tailoring the entire catalytic ensemble in SCCs to achieve stable and selective performance with practically relevant metal coverages. This expansion in application scope transcends from model reactions to complex and technically relevant reactions. Furthermore, we provide a perspective on the opportunities and future directions for SCC design within this rapidly evolving field.

14.
Nature ; 622(7984): 754-760, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730999

RESUMO

Single-atom catalysts (SACs) have well-defined active sites, making them of potential interest for organic synthesis1-4. However, the architecture of these mononuclear metal species stabilized on solid supports may not be optimal for catalysing complex molecular transformations owing to restricted spatial environment and electronic quantum states5,6. Here we report a class of heterogeneous geminal-atom catalysts (GACs), which pair single-atom sites in specific coordination and spatial proximity. Regularly separated nitrogen anchoring groups with delocalized π-bonding nature in a polymeric carbon nitride (PCN) host7 permit the coordination of Cu geminal sites with a ground-state separation of about 4 Å at high metal density8. The adaptable coordination of individual Cu sites in GACs enables a cooperative bridge-coupling pathway through dynamic Cu-Cu bonding for diverse C-X (X = C, N, O, S) cross-couplings with a low activation barrier. In situ characterization and quantum-theoretical studies show that such a dynamic process for cross-coupling is triggered by the adsorption of two different reactants at geminal metal sites, rendering homo-coupling unfeasible. These intrinsic advantages of GACs enable the assembly of heterocycles with several coordination sites, sterically congested scaffolds and pharmaceuticals with highly specific and stable activity. Scale-up experiments and translation to continuous flow suggest broad applicability for the manufacturing of fine chemicals.

15.
Front Oncol ; 13: 1235490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731638

RESUMO

Background: There are still many controversies about biliary drainage in MBO, and we aimed to summarize and evaluate the evidence associated with biliary drainage. Methods: We conducted an umbrella review of SRoMAs based on RCTs. Through July 28, 2022, Embase, PubMed, WOS, and Cochrane Database were searched. Two reviewers independently screened the studies, extracted the data, and appraised the methodological quality of the included studies. GRADE was used to evaluate the quality of the evidence. Results: 36 SRoMAs were identified. After excluding 24 overlapping studies, 12 SRoMAs, including 76 RCTs, and 124 clinical outcomes for biliary drainage in MBO were included. Of the 124 pieces of evidence evaluated, 13 were rated "High" quality, 38 were rated "Moderate", and the rest were rated "Low" or "Very low". For patients with MBO, 125I seeds+stent can reduce the risk of stent occlusion, RFA+stent can improve the prognosis; compared with PC, SEMS can increase the risk of tumor ingrowth and reduce the occurrence of sludge formation, and the incidence of tumor ingrowth in C-SEMS/PC-SEMS was significantly lower than that in U-SEMS. There was no difference in the success rate of drainage between EUS-BD and ERCP-BD, but the use of EUS-BD can reduce the incidence of stent dysfunction. For patients with obstructive jaundice, PBD does not affect postoperative mortality compared to direct surgery. The use of MS in patients with periampullary cancer during PBD can reduce the risk of re-intervention and stent occlusion compared to PC. In addition, we included four RCTs that showed that when performing EUS-BD on MBO, hepaticogastrostomy has higher technical success rates than choledochoduodenostomy. Patients who received Bilateral-ENBD had a lower additional drainage rate than those who received Unilateral-ENBD. Conclusions: Our study summarizes a large amount of evidence related to biliary drainage, which helps to reduce the uncertainty in the selection of biliary drainage strategies for MBO patients under different circumstances.

16.
World J Surg Oncol ; 21(1): 276, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658360

RESUMO

BACKGROUND: The optimal timing of surgery after neoadjuvant chemotherapy (NAC) in patients with synchronous colorectal cancer liver metastases (SLM) remains controversial. We plan to analyze whether the choice of different surgical timings will have different effects on the perioperative and oncologic outcomes of patients. METHOD: We retrospectively collected all patients who met the inclusion and exclusion criteria from 2010 to 2020 in West China Hospital. Patients were grouped according to time interval (TI) after NAC to surgery. The perioperative and oncologic outcomes of the two groups were compared after propensity score matching. Univariate and multivariate analyzes were used to screen factors associated with prognosis. RESULT: Among 255 enrolled patients, 188 were matched with comparable baseline (94 each group). Patients in the 6≦TI≦8 group had longer operation time, less intraoperative blood loss, and less postoperative complications than those in the 4≦TI < 6 group. However, the overall survival (OS) (p = 0.012) and disease-free survival (DFS) (p = 0.013) of the patients in the 4≦TI < 6 group were better than those in the 6≦TI≦8 group. Subgroup analysis found that the above conclusions still apply in age ≥ 60, non-anemic patients, and patients who underwent R0 resection. OS was inversely correlated with TI in patients without preoperative jaundice. DFS was negatively correlated with TI in patients with preoperative jaundice. Multivariate analysis showed that the prolongation of TI after NAC to surgery was an independent prognostic risk factor for OS and DFS. CONCLUSIONS: Patients with SLM may be a better choice for surgery within 4-6 weeks after receiving NAC. Although patients with SLM undergoing surgery 4-6 weeks after NAC has a higher rate of postoperative complications, radical surgery is still recommended for a better survival benefit.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Terapia Neoadjuvante , Pontuação de Propensão , Estudos Retrospectivos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Complicações Pós-Operatórias , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/cirurgia
17.
ACS Nano ; 17(16): 15441-15448, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37552585

RESUMO

Emergent quantum phenomena in two-dimensional van der Waal (vdW) magnets are largely governed by the interplay between exchange and Coulomb interactions. The ability to precisely tune the Coulomb interaction enables the control of spin-correlated flat-band states, band gap, and unconventional magnetism in such strongly correlated materials. Here, we demonstrate a gate-tunable renormalization of spin-correlated flat-band states and bandgap in magnetic chromium tribromide (CrBr3) monolayers grown on graphene. Our gate-dependent scanning tunneling spectroscopy (STS) studies reveal that the interflat-band spacing and bandgap of CrBr3 can be continuously tuned by 120 and 240 meV, respectively, via electrostatic injection of carriers into the hybrid CrBr3/graphene system. This can be attributed to the self-screening of CrBr3 arising from the gate-induced carriers injected into CrBr3, which dominates over the weakened remote screening of the graphene substrate due to the decreased carrier density in graphene. Precise tuning of the spin-correlated flat-band states and bandgap in 2D magnets via electrostatic modulation of Coulomb interactions not only provides effective strategies for optimizing the spin transport channels but also may exert a crucial influence on the exchange energy and spin-wave gap, which could raise the critical temperature for magnetic order.

18.
Expert Rev Gastroenterol Hepatol ; 17(9): 937-947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531090

RESUMO

BACKGROUND: Common bile duct stones (CBDS) have a reported recurrence rate of 4%-24% after stone extraction. The most commonly applied stone extraction method is endoscopic cholangiopancreatography (ERCP). We conducted a systematic review and meta-analysis to identify all available risk factors for recurrent CBDS following stone retraction. RESEARCH DESIGN AND METHODS: A literature search of studies with case-control design was performed to identify potential risk factors for recurrent CBDS. The impact of different risk factors on stone recurrence was analyzed. Pooled odds ratios (ORs) with 95% CIs and heterogeneity were calculated. Identified risk factors were graded as 'strong,' 'moderate,' or 'weak' after quality assessment. RESULTS: A total of 46 studies discussing stone recurrence following ERCP treatment were included. CBD diameter≥1.5 cm, sharp CBD angulation, multiple ERCP sessions, postoperative pneumobilia, history of CBD incision, and biliary stent placement were identified as strong risk factors; larger CBD diameter, periampullary diverticulum, mechanical lithotripsy, and history of cholecystectomy were identified as moderate. Other weak risk factors were also listed. CONCLUSIONS: In this comprehensive study, we identified 14 risk/protective factors for recurrent CBDS following ERCP. Pooled odds ratios were calculated and evaluated the quality of evidence. These findings may shed light on the assessment and management of CBDS.


Assuntos
Coledocolitíase , Cálculos Biliares , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Colangiopancreatografia Retrógrada Endoscópica/métodos , Esfinterotomia Endoscópica/efeitos adversos , Cálculos Biliares/diagnóstico por imagem , Cálculos Biliares/cirurgia , Fatores de Risco , Ducto Colédoco/cirurgia , Coledocolitíase/etiologia , Coledocolitíase/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
19.
Nat Nanotechnol ; 18(12): 1401-1408, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37653051

RESUMO

Patterning antidots, which are regions of potential hills that repel electrons, into well-defined antidot lattices creates fascinating artificial periodic structures, leading to anomalous transport properties and exotic quantum phenomena in two-dimensional systems. Although nanolithography has brought conventional antidots from the semiclassical regime to the quantum regime, achieving precise control over the size of each antidot and its spatial period at the atomic scale has remained challenging. However, attaining such control opens the door to a new paradigm, enabling the creation of quantum antidots with discrete quantum hole states, which, in turn, offer a fertile platform to explore novel quantum phenomena and hot electron dynamics in previously inaccessible regimes. Here we report an atomically precise bottom-up fabrication of a series of atomic-scale quantum antidots through a thermal-induced assembly of a chalcogenide single vacancy in PtTe2. Such quantum antidots consist of highly ordered single-vacancy lattices, spaced by a single Te atom, reaching the ultimate downscaling limit of antidot lattices. Increasing the number of single vacancies in quantum antidots strengthens the cumulative repulsive potential and consequently enhances the collective interference of multiple-pocket scattered quasiparticles inside quantum antidots, creating multilevel quantum hole states with a tunable gap from the telecom to far-infrared regime. Moreover, precisely engineered quantum hole states of quantum antidots are geometry protected and thus survive on oxygen substitutional doping. Therefore, single-vacancy-assembled quantum antidots exhibit unprecedented robustness and property tunability, positioning them as highly promising candidates for advancing quantum information and photocatalysis technologies.

20.
Sci Total Environ ; 896: 165279, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406698

RESUMO

As a form of regional agglomeration, industrial parks create huge benefits for China's economic development, but they also generate considerable environmental externalities and are expected to become the breakthrough to achieve green transformation. This study builds a panel data set by combining a variety of data on the environmental and economic characteristics of firms, industrial parks, and regions, and empirically investigates the effects of establishing industrial parks on emissions of COD, NH3, SO2, and dust. We find such effects are heterogeneous across scales of investigation and types of industrial parks. After entering the industrial parks, firms can reduce their environmental pollution, and the emissions of COD, SO2 and dust have decreased by 9.3 %, 13.4 % and 4.6 %, respectively. However, the study at the regional level finds that, after the establishment of industrial parks, the overall emissions of COD, NH3, SO2, and dust have increased by 37.9 %, 365 %, 45.5 % and 34.9 %, respectively. The expansion of production scale and the increase of pollution-intensive industries are the main factors that cause more serious regional pollution. Meanwhile, the improvement of pollution treatment is very limited. After the establishment of a new park, the emission intensities of newly entered firms are higher than those of pre-existing firms, indicating industrial parks may lower environmental requirements in exchange for economic growth. Parks with clean dominant industries, high levels of water reuse and technical innovation tend to emit less pollutants. Based on the results, this study gives four suggestions for establishing environment-friendly industrial parks, that is, to plan the industrial layout rationally, to speed up the construction of pollution treatment facilities, to increase the environmental threshold for entrance, and to promote technical innovation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...