Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 243: 120428, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536247

RESUMO

Although the autopsies of reverse osmosis (RO) membranes from full-scale, brackish water desalination plants identify the co-presence of silica and Ca-based minerals in scaling layers, minimal research exists on their formation process and mechanisms. Therefore, combined scaling by silica and either gypsum (non-alkaline) or amorphous calcium phosphate (ACP, alkaline) was investigated in this study for their distinctive impacts on membrane performance. The obtained results demonstrate that the coexistence of silica and Ca-based mineral salts in feedwaters significantly reduced water flux decline as compared to single type of Ca-based mineral salts. This antagonistic effect was primarily attributed to the silica-mediated alleviation of Ca-based mineral scaling. In the presence of silica, silica skins were immediately established around Ca-based mineral precipitates once they emerged. Sheathing by the siliceous skins hindered the aggregation and thus the morphological evolution of Ca-based mineral species. Unlike sulfate precipitates, ACP precipitates can induce the formation of dense and thick silica skins via an additional condensation reaction. Such a phenomenon rationalized the notion concerning a stronger mitigating effect of silica on ACP scaling than gypsum scaling. Meanwhile, coating by silica skins altered the surface chemistries of Ca-based mineral precipitates, which should be fully considered in regulating membrane surface properties for combined scaling control. Our findings advance the mechanistic understanding on combined mineral scaling of RO membranes, and may guide the appropriate design of membrane surface properties for scaling-resistant membrane tailored to brackish water desalination.


Assuntos
Dióxido de Silício , Purificação da Água , Cálcio , Sulfato de Cálcio , Sais , Purificação da Água/métodos , Osmose , Minerais , Águas Salinas , Membranas Artificiais
2.
Sci Total Environ ; 746: 141178, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738720

RESUMO

Reverse osmosis (RO) membranes were preconditioned in this study with humic acid, sodium alginate, or bovine serum albumin, and subsequently examined for silica scaling using the water matrix representative of concentrated brackish groundwater. The results suggested that water matrix combined with organic foulants affected silica scaling. High ambient pH favored the moderate silica ionization and thus the silica homogeneous polymerization to potentially form low molecular weight silica oligomers. The resulting scaling layer was dense and highly impermeable. Under the high Ca proportion at a given hardness, membrane scaling was enhanced through the Ca-induced silica scaling and the formation of intermolecular bridges between adjacent silica species. In contrast, high Mg hardness may facilitate the sustainable growth of silica oligomers to form the ringed high molecular weight oligomers by reducing the required energy for chain deformation. The deposition of these oligomers caused a loose scaling layer with reduced hydraulic resistance to water permeation. During the scaling tests under similar water matrix, the membranes slightly fouled by organics suffered severe flux decline due to an available space provided by the pre-existing organic fouling layer for subsequent silica scaling.

3.
Water Res ; 150: 358-367, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550866

RESUMO

Silica scaling of reverse osmosis membranes in brackish water desalination is less understood than hardness scaling due to the complex silica behaviors at the membrane/water interface. In this study, -COOH, -SO3H, -NH2 and -OH functional groups were introduced onto polyamide membranes to create distinct surface physicochemical properties. The resulting membranes were further studied under similar scaling conditions to yield temporal flux loss data that were empirically interpreted by a logistic growth model. The scaled membranes were also characterized by complementary analytical techniques. It was found that permeate flux loss was strongly correlated to the initial silica layer formed by direct interaction between reactive silanol (Si-OH) and reciprocal groups on the membrane surface, rather than the entire scaling layer. Importantly, membrane surface properties dictated the initial silica layer formation through three possible mechanisms, i.e., electrostatic repulsion, competitive adsorption, and interfacial energy change. Of these, electrostatic repulsion was identified as the primary one. Therefore, by modifying the membrane surface properties, the three aforementioned mechanisms may be enhanced to favor the formation of a loose, disordered initial silica scaling layer. Accordingly, membrane flux loss may be mitigated. This finding provided important insights into the design heuristics of scaling-resistant reverse osmosis membrane for brackish water desalination.


Assuntos
Dióxido de Silício , Purificação da Água , Membranas Artificiais , Osmose , Águas Salinas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...