Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(13): e202319728, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38285535

RESUMO

Organic molecules bearing chiral sulfur stereocenters exert a great impact on asymmetric catalysis and synthesis, chiral drugs, and chiral materials. Compared with acyclic ones, the catalytic asymmetric synthesis of thio-heterocycles has largely lagged behind due to the lack of efficient synthetic strategies. Here we establish the first modular platform to access chiral thio-oxazolidinones via Pd-catalyzed asymmetric [3+2] annulations of vinylethylene carbonates with sulfinylanilines. This protocol is featured by readily available starting materials, and high enantio- and diastereoselectivity. In particular, an unusual effect of a non-chiral supporting ligand on the diastereoselectivity was observed. Possible reaction mechanisms and stereocontrol models were proposed.

2.
Chemistry ; 30(10): e202303476, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38065837

RESUMO

The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.

3.
Angew Chem Int Ed Engl ; 62(51): e202312102, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37936319

RESUMO

The exploration of value-added conversions of naturally abundant amino acids has received considerable attention from the synthetic community. Compared with the well-established asymmetric decarboxylative transformation, the asymmetric deaminative transformation of amino acids still remains a formidable challenge, mainly due to the lack of effective strategies for the C-N bond activation and the potential incompatibility with chiral catalysts. Here, we disclose a photoinduced Cu-catalyzed asymmetric deaminative coupling reaction of amino acids with arylboronic acids. This new protocol provides a series of significant chiral phenylacetamides in generally good yields and excellent stereoselectivity under mild and green conditions (42-85 % yields, up to 97 % ee). Experimental investigations and theoretical calculations were performed to reveal the crucial role of additional phenols in improving catalytic efficiency and enantiocontrol.

4.
J Am Chem Soc ; 145(14): 7983-7991, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36974976

RESUMO

Conjugate addition is among the most important synthetic protocols for constructing carbon skeletons and is widely used to synthesize natural products and drugs. However, asymmetric catalysis studies have mainly focused on constructing stereogenic centers arising from conjugate alkenes. Here, we report the first photoinduced cobalt-catalyzed dynamic kinetic reductive conjugate addition reaction that enables the formation of heterobiaryls with axial chirality (45 examples, up to 91% yield and 97% ee). This method features mild reaction conditions, good functional-group tolerance, and excellent enantiomeric control. Significantly, large amounts of metal waste and precious metal catalysts can be avoided under these conditions. Migration of the chiral arylcobalt species into the alkene might be the rate-determining step based on kinetic studies.

5.
J Am Chem Soc ; 145(12): 6944-6952, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920031

RESUMO

Enantioselective metallaphotoredox catalysis, which combines photoredox catalysis and asymmetric transition-metal catalysis, has become an effective approach to achieve stereoconvergence under mild conditions. Although many impressive synthetic approaches have been developed to access central chirality, the construction of axial chirality by metallaphotoredox catalysis still remains underexplored. Herein, we report two visible light-induced cobalt-catalyzed asymmetric reductive couplings of biaryl dialdehydes to synthesize axially chiral aldehydes (60 examples, up to 98% yield, >19:1 dr, and >99% ee). This protocol shows good functional group tolerance, broad substrate scope, and excellent diastereo- and enantioselectivity.

6.
Angew Chem Int Ed Engl ; 62(21): e202301592, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36932035

RESUMO

Metal-polarized aza-ortho-quinone methides (aza-o-QMs) are a unique and efficient handle for azaheterocycle synthesis. Despite great achievements, the potential of these reactive intermediates has not yet been fully exploited, especially the new reaction modes. Herein, we disclosed an unprecedented dearomatization process of metal-polarized aza-o-QMs, affording transient dearomatized spiroaziridine intermediates. Based on this serendipity, we accomplished three sequential dearomatization-rearomatization reactions of benzimidazolines with aza-sulfur ylides, enabling the divergent synthesis of bis-nitrogen heterocycles with high efficiency and flexibility. Moreover, experimental and theoretical studies were performed to explain the proposed mechanisms and observed selectivity. Further cellular evaluation of the dibenzodiazepine products identified a hit compound for new antitumor drugs.

7.
Angew Chem Int Ed Engl ; 62(3): e202212444, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36377924

RESUMO

Ring-opening transformations of donor-acceptor (D-A) cyclopropanes enable the rapid assembly of complex molecules. However, the enantioselective formation of chiral quaternary stereocenters using substrates bearing two different acceptors remains a challenge. Herein, we describe the first palladium-catalyzed highly diastereo- and enantioselective (3+2) cycloaddition of vinyl cyclopropanes bearing two different electron-withdrawing groups, a subset of D-A cyclopropanes. The key to the success of this reaction is the remote stereoinduction through hydrogen bond from chiral ligands, which thereby addressed the aforementioned challenge. A variety of chiral five-membered heterocycles were produced in good yields and with high stereoselectivity (up to 99 % yields, 99 : 1 er and >19 : 1 dr). In-depth mechanistic investigations, including control experiments and theoretical calculations, revealed the origin of the stereoselectivity and the importance of H-bonding in stereocontrol.


Assuntos
Ciclopropanos , Paládio , Paládio/química , Reação de Cicloadição , Catálise , Estereoisomerismo , Ciclopropanos/química
8.
J Am Chem Soc ; 144(43): 19932-19941, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36270010

RESUMO

Searching for efficient strategies to access structurally novel aminoindolines is of great significance for drug discovery. However, catalytic asymmetric de novo construction of aminoindoline scaffolds with functionality primed for diversification still remains elusive. Here, we report a Cu-catalyzed asymmetric cyclization of ethynyl benzoxazinones with amines, producing chiral 3-aminoindolines in good yield and with high enantioselectivity (up to 97% yield and 98:2 er). Moreover, a radical-mediated sulfonyl migration of these products was unexpectedly found, further affording new chiral 3-aminoindolines bearing alkenyl sulfonyl groups with retained enantiopurity (up to 84% yield and 98:2 er). Bioactivity evaluations indicate that these 3-aminoindolines show notable antitumor activities and chirality is proven to have a significant impact on their antitumor activity.


Assuntos
Aminas , Ciclização , Estereoisomerismo , Catálise
9.
Chem Soc Rev ; 51(10): 4146-4174, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35521739

RESUMO

Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.


Assuntos
Metais , Catálise
10.
J Am Chem Soc ; 144(18): 8347-8354, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35481388

RESUMO

Grignard addition is one of the most important methods used for syntheses of alcohol compounds and has been known for over a hundred years. However, research on asymmetric catalysis relies on the use of organometallic nucleophiles. Here, we report the first visible-light-induced cobalt-catalyzed asymmetric reductive Grignard-type addition for synthesizing chiral benzyl alcohols (>50 examples, up to 99% yield, and 99% ee). This methodology has the advantages of mild reaction conditions, good functionality tolerance, excellent enantiocontrol, the avoidance of mass metal wastes, and the use of precious metal catalysts. Kinetic realization studies suggested that migratory insertion of an aryl cobalt species into the aldehyde was the rate-determining step of the reductive addition reaction.


Assuntos
Cobalto , Compostos Organometálicos , Aldeídos , Catálise , Iodetos
11.
Angew Chem Int Ed Engl ; 61(24): e202117215, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35333435

RESUMO

Catalytic asymmetric synthesis of chiral endocyclic allenes remains a challenge in allene chemistry owing to unfavored tension and complex chirality. Here, we present a new relay strategy merging Pd-catalyzed asymmetric [3+2] annulation with enyne-Cope rearrangement, providing a facile route to chiral 9-membered endocyclic allenes with high efficiency and enantioselectivity. Moreover, theoretical calculations and experimental studies were performed to illustrate the critical, but unusual Cope rearrangement that allows for the complete central-to-axial chirality transfer.

12.
Chem Commun (Camb) ; 57(99): 13566-13569, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843613

RESUMO

Transition metal-catalyzed cycloaddition has been established as a powerful tool for heterocycle synthesis. Despite impressive advances, the exploitation of new catalysis strategies and systems is still highly significant to enrich the heterocycle family. Herein, we disclosed a cooperative catalysis system merging an achiral Pd catalyst and a chiral Co catalyst for the asymmetric [4+2] cycloaddition between vinyl benzoxazinones and N-acylpyrazoles. Chiral tetrahydroquinolines bearing two contiguous, unusual cis-configured stereocenters were produced in high yields and enantio- and diastereoselectivities. The pyrazole directing group can be easily converted into many other functional groups, thus demonstrating the flexibility of the present methodology.

13.
Chem Soc Rev ; 50(22): 12808-12827, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652345

RESUMO

Transition metal-catalysed asymmetric coupling has been established as a robust tool for constructing complex organic molecules. Although this area has been extensively studied, the development of efficient protocols to construct stereogenic centres with excellent regio- and enantioselectivities is highly desirable and remains challenging. Asymmetric transition metal catalysis with light intervention provides a practical alternative strategy to current methods and considerably expands the synthetic utility as a result of abundant feedstocks and mild conditions. This tutorial review comprehensively summarizes the recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention; in particular, a concise analysis of substrate scope and the mechanistic scenarios governing stereocontrol is discussed.

14.
Chem Commun (Camb) ; 57(68): 8496-8499, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34351325

RESUMO

A DBU-catalyzed desymmetric [3+2] cycloaddition between para-quinamines and photogenerated ketenes was developed for the first time. Under the irradiation of low-energy blue LEDs, a variety of hydroindoles bearing all-carbon quaternary centers were produced with good reaction efficiency and complete diastereoselectivity (34 examples, 45-99% yields and >95 : 5 dr). This protocol represents a new approach to synthetically significant hydroindoles, and features broad substrate scope, high functional group compatibility and mild reaction conditions.

15.
J Am Chem Soc ; 143(11): 4168-4173, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705660

RESUMO

1,3-Dienes are readily available feedstocks that are widely used in the laboratory and industry. However, the potential of converting 1,3-dienes into value-added products, especially chiral products, has not yet been fully exploited. By synergetic photoredox/copper catalysis, we achieve the first visible-light-induced, enantioselective carbocyanation of 1,3-dienes by using carboxylic acid derivatives and trimethylsilyl cyanide. Under mild and neutral conditions, a diverse range of chiral allyl cyanides are produced in generally good efficiency and with high enantioselectivity from bench-stable and user-safe chemicals. Moreover, preliminary results also confirm that this success can be expanded to 1,3-enynes and the four-component carbonylative carbocyanation of 1,3-dienes and 1,3-enynes.

17.
Angew Chem Int Ed Engl ; 59(40): 17429-17434, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32618093

RESUMO

Vinylcyclopropanes (VCPs) are commonly used in transition-metal-catalyzed cycloadditions, and the utilization of their recently realized reactivities to construct new cyclic architectures is of great significance in modern synthetic chemistry. Herein, a palladium-catalyzed, visible-light-driven, asymmetric [5+2] cycloaddition of VCPs with α-diazoketones is accomplished by switching the reactivity of the Pd-containing dipolar intermediate from an all-carbon 1,3-dipole to an oxo-1,5-dipole. Enantioenriched seven-membered lactones were produced with good reaction efficiencies and selectivities (23 examples, 52-92 % yields with up to 99:1 er and 12.5:1 dr). In addition, computational investigations were performed to rationalize the observed high chemo- and periselectivities.

18.
Angew Chem Int Ed Engl ; 59(33): 14096-14100, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32372524

RESUMO

Higher-order cycloadditions, particularly [8+2] cycloadditions, are a straightforward and efficient strategy for constructing significant medium-sized architectures. Typically, configuration-restrained conjugated systems are utilized as 8π-components for higher-order concerted cycloadditions. However, for this reason, 10-membered monocyclic skeletons have never been constructed via catalytic asymmetric [8+2] cycloaddition with high peri- and stereoselectivity. Here, we accomplished an enantioselective [8+2] dipolar cycloaddition via the merger of visible-light activation and asymmetric palladium catalysis. This protocol provides a new route to 10-membered monocyclic architectures bearing chiral quaternary stereocenters with high chemo-, peri-, and enantioselectivity. The success of this strategy relied on the facile in situ generation of Pd-containing 1,8-dipoles and their enantioselective trapping by ketene dipolarophiles, which were formed in situ via a photo-Wolff rearrangement.

19.
Chem Sci ; 11(39): 10605-10613, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34094315

RESUMO

N-Heterocyclic carbenes (NHCs) are efficient Lewis basic catalysts for the umpolung of various polarized unsaturated compounds usually including aldehydes, imines, acyl chlorides and activated esters. NHC catalysis involving electron pair transfer steps has been extensively studied; however, NHC catalysis through single-electron transfer (SET) processes, despite having the potential to achieve chemical transformations of inert chemical bonds and using green reagents, has long been a challenging task in organic synthesis. In parallel, visible-light-induced photocatalysis and photoexcitation have been established as powerful tools to facilitate sustainable organic synthesis, as they enable the generation of various reactive radical intermediates under extremely mild conditions. Recently, a number of elegant visible-light-induced, NHC-catalyzed transformations were developed for accessing valuable organic compounds. As a result, this minireview will highlight the recent advances in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...