Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2401386121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696471

RESUMO

In the meiotic prophase, programmed DNA double-strand breaks are repaired by meiotic recombination. Recombination-defective meiocytes are eliminated to preserve genome integrity in gametes. BRCA1 is a critical protein in somatic homologous recombination, but studies have suggested that BRCA1 is dispensable for meiotic recombination. Here we show that BRCA1 is essential for meiotic recombination. Interestingly, BRCA1 also has a function in eliminating recombination-defective oocytes. Brca1 knockout (KO) rescues the survival of Dmc1 KO oocytes far more efficiently than removing CHK2, a vital component of the DNA damage checkpoint in oocytes. Mechanistically, BRCA1 activates chromosome asynapsis checkpoint by promoting ATR activity at unsynapsed chromosome axes in Dmc1 KO oocytes. Moreover, Brca1 KO also rescues the survival of asynaptic Spo11 KO oocytes. Collectively, our study not only unveils an unappreciated role of chromosome asynapsis in eliminating recombination-defective oocytes but also reveals the dual functions of BRCA1 in safeguarding oocyte genome integrity.


Assuntos
Proteína BRCA1 , Proteínas de Ciclo Celular , Camundongos Knockout , Oócitos , Oócitos/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Feminino , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Meiose/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Quebras de DNA de Cadeia Dupla , Pareamento Cromossômico/genética , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/genética , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Recombinação Genética , Recombinação Homóloga , Instabilidade Genômica
2.
Hum Reprod Update ; 28(6): 763-797, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35613017

RESUMO

BACKGROUND: Meiosis is an essential stage in the life cycle of sexually reproducing species, underlying formation of haploid gametes and serving as the basis of genetic diversity. A central mechanism of meiosis is recombination between homologous chromosomes, during which programmed DNA double-strand breaks (DSBs) are sequentially repaired to form the crossovers essential for faithful chromosomal segregation. Aberrant meiotic recombination often leads to gametogenic failure or produces aneuploid gametes resulting in subfertility or infertility, miscarriage or birth defects. OBJECTIVE AND RATIONALE: The goal of this review was to characterize the molecular mechanisms of meiotic recombination and related human infertility disorders, particularly male infertility caused by non-obstructive azoospermia (NOA). SEARCH METHODS: Our search included PubMed database articles, focusing mainly on English-language publications dated between January 2016 and February 2022. The search term 'meiosis' was combined with the following keywords: meiotic initiation, chromosome pairing, homologous recombination, chromosome axis, DSB, DSB repair, crossover, meiotic sex chromosome inactivation, meiotic checkpoints, meiotic arrest, NOA, premature ovarian insufficiency (POI) or premature ovarian failure, treatment and cancer. In addition, references within these articles were used to identify additional studies. OUTCOMES: The preliminary search generated ∼3500 records. The majority of articles were identified as meeting abstracts or duplicates, contained non-English text or provided insufficient data and were therefore eliminated. A total of 271 articles associated with meiotic recombination were included in the final analysis. This review provides an overview of molecules and mechanisms involved in meiotic recombination processes, specifically meiosis-specific chromosome structures, DSB formation, homology search, formation of recombination intermediates and crossover formation. The cumulative results suggest that meiosis is regulated sequentially by a series of meiotic recombination genes and proteins. Importantly, mutations in these genes often affect meiotic progression, activating meiotic checkpoints, causing germ cell arrest and leading to subfertility or infertility. At least 26 meiotic recombination-related genes have been reported to be mutated in NOA in men, and 10 of these genes are mutated in POI in women. This suggests that variants of meiotic recombination-related genes can cause human subfertility or infertility, especially NOA. WIDER IMPLICATIONS: Understanding the processes of homologous chromosome pairing, recombination and timely resolution of homologous chromosomes may provide guidance for the analysis of potential monogenetic causes of human subfertility or infertility and the development of personalized treatments. In clinical practice, we can develop a meiotic recombination-related gene panel to screen for gene mutations in individuals with subfertility or infertility. Testicular sperm extraction should not be recommended when an NOA-affected individual carries definite disease-causing mutations of a meiotic gene, so as to avoid the unnecessary invasive diagnosis. Risk of ovarian dysfunction should be evaluated if a woman carries meiotic recombination-related gene mutations. It may be possible to improve or restore fertility through manipulation of meiotic recombination-related genes in the future.


Assuntos
Azoospermia , Humanos , Masculino , Feminino , Azoospermia/genética , Sêmen , Recombinação Homóloga , Reprodução
4.
Cell Death Dis ; 11(7): 519, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647118

RESUMO

HORMAD1 is a meiosis-specific protein that promotes synapsis and recombination of homologous chromosomes in meiotic prophase. Originally identified as a cancer/testis antigen, HORMAD1 is also aberrantly expressed in several cancers. However, the functions of HORMAD1 in cancer cells are still not clear. Here, we show that HORMAD1 is aberrantly expressed in a wide variety of cancers and compromises DNA mismatch repair in cancer cells. Mechanistically, HORMAD1 interacts with MCM8-MCM9 complex and prevents its efficient nuclear localization. As a consequence, HORMAD1-expressing cancer cells have reduced MLH1 chromatin binding and DNA mismatch repair defects. Consistently, HORMAD1 expression is associated with increased mutation load and genomic instability in many cancers. Taken together, our study provides mechanistic insights into HORMAD1's functions in cancer cells, which can potentially be exploited for targeted therapy of HORMAD1-expressing cancers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Manutenção de Minicromossomo/genética , Neoplasias/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout
5.
Cell Biosci ; 10: 49, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257107

RESUMO

As an important player in DNA damage response, BRCA1 maintains genomic stability and suppresses tumorigenesis by promoting DNA double-strand break (DSB) repair through homologous recombination (HR). Since the cloning of BRCA1 gene, many Brca1 mutant alleles have been generated in mice. Mice carrying homozygous Brca1 mutant alleles are embryonic lethal, suggesting that BRCA1's functions are important for embryonic development. Studies of embryonic development in Brca1 mutant mice not only reveal the physiological significance of BRCA1's known function in HR, but also lead to the discovery of BRCA1's new function in HR: regulation of DSB repair pathway choice.

6.
Cell Death Differ ; 27(9): 2552-2567, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32139898

RESUMO

BRCA1 is critical for DNA double-strand break (DSB) repair by homologous recombination (HR). BRCA1 deficient mice are embryonic lethal. Previous studies have shown that 53BP1 knockout (KO) rescues embryonic lethality of BRCA1 hypomorphic mutant mice by restoring HR. Here, we show that 53BP1 KO can partially rescue embryonic lethality of BRCA1 total KO mice, but HR is not restored in BRCA1-53BP1 double knockout (DKO) mice. As a result, BRCA1-53BP1 DKO cells are extremely sensitive to PARP inhibitors (PARPi). In addition to HR deficiency, BRCA1-53BP1 DKO cells have elevated microhomology-mediated end joining (MMEJ) activity and G2/M cell cycle checkpoint defects, causing severe genomic instability in these cells. Interestingly, BRCA1-53BP1 DKO mice rapidly develop thymic lymphoma that is 100% penetrant, which is not observed in any BRCA1 mutant mice rescued by 53BP1 KO. Taken together, our study reveals that 53BP1 KO can partially rescue embryonic lethality caused by complete BRCA1 loss without rescuing HR-related defects. This finding suggests that loss of 53BP1 can support the development of cancers with silenced BRCA1 expression without causing PARPi resistance.


Assuntos
Proteína BRCA1/deficiência , Perda do Embrião/genética , Instabilidade Genômica , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/deficiência , Animais , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Aberrações Cromossômicas , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Intervalo Livre de Doença , Perda do Embrião/patologia , Inativação Gênica , Recombinação Homóloga , Humanos , Linfoma/patologia , Metáfase , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Domínios Proteicos , Timo/patologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
7.
Cell Death Differ ; 27(7): 2176-2190, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31965061

RESUMO

DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex's function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Meiose , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/deficiência , Pareamento Cromossômico , Cromossomos de Mamíferos/metabolismo , Proteínas de Ligação a DNA/deficiência , Etoposídeo/farmacologia , Células HeLa , Histonas/metabolismo , Recombinação Homóloga , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Camundongos Knockout , Modelos Biológicos , Fosforilação , Proteínas Recombinantes/metabolismo , Espermatócitos/metabolismo
8.
J Mol Cell Biol ; 12(2): 113-124, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31152661

RESUMO

p53 is a key transcription factor to regulate gene transcription. However, the molecular mechanism of chromatin-associated p53 on gene transcription remains elusive. Here, using unbiased protein affinity purification, we found that the RNF20/40 complex associated with p53 on the chromatin. Further analyses indicated that p53 mediated the recruitment of the RNF20/40 complex to p53 target gene loci including p21 and PUMA loci and regulated the transcription of p21 and PUMA via the RNF20/40 complex-dependent histone H2B ubiquitination (ubH2B). Lacking the RNF20/40 complex suppressed not only ubH2B but also the generation of the mature mRNA of p21 and PUMA. Moreover, ubH2B was recognized by the ubiquitin-binding motif of pre-mRNA processing splicing factor 8 (PRPF8), a subunit in the spliceosome, and PRPF8 was required for the maturation of the mRNA of p21 and PUMA. Our study unveils a novel p53-dependent pathway that regulates mRNA splicing for tumor suppression.


Assuntos
Splicing de RNA/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células K562 , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
9.
Epigenetics ; 12(7): 551-560, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402695

RESUMO

The 5-methylcytosine (5mC) modification regulates multiple cellular processes and is faithfully maintained following DNA replication. In addition to DNA methyltransferase (DNMT) family proteins, ubiquitin-like PHD and ring finger domain-containing protein 1 (UHRF1) plays an important role in the maintenance of 5mC levels. Loss of UHRF1 abolishes 5mC in cells and leads to embryonic lethality in mice. Interestingly, UHRF1 has a paralog, UHRF2, that has similar sequence and domain architecture, but its biologic function is not clear. Here, we have generated Uhrf2 knockout mice and characterized the role of UHRF2 in vivo. Uhrf2 knockout mice are viable, but the adult mice develop frequent spontaneous seizures and display abnormal electrical activities in brain. Despite no global DNA methylation changes, 5mC levels are decreased at certain genomic loci in the brains of Uhrf2 knockout mice. Therefore, our study has revealed a unique role of UHRF2 in the maintenance of local 5mC levels in brain that is distinct from that of its paralog UHRF1.


Assuntos
5-Metilcitosina/metabolismo , Metilação de DNA , Convulsões/genética , Ubiquitina-Proteína Ligases/genética , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Ondas Encefálicas , Feminino , Masculino , Camundongos , Convulsões/fisiopatologia , Ubiquitina-Proteína Ligases/metabolismo
10.
PLoS One ; 11(5): e0155476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27195665

RESUMO

Ubiquitylation has an important role as a signal transducer that regulates protein function, subcellular localization, or stability during the DNA damage response. In this study, we show that Ring domain E3 ubiquitin ligases RNF138 is recruited to DNA damage site quickly. And the recruitment is mediated through its Zinc finger domains. We further confirm that RNF138 is phosphorylated by ATM at Ser124. However, the phosphorylation was dispensable for recruitment to the DNA damage site. Our findings also indicate that RAD51 assembly at DSB sites following irradiation is dramatically affected in RNF138-deficient cells. Hence, RNF138 is likely involved in regulating homologous recombination repair pathway. Consistently, efficiency of homologous recombination decreased observably in RNF138-depleted cells. In addition, RNF138-deficient cell is hypersensitive to DNA damage insults, such as IR and MMS. And the comet assay confirmed that RNF138 directly participated in DNA damage repair. Moreover, we find that RAD51D directly interacted with RNF138. And the recruitment of RAD51D to DNA damage site is delayed and unstable in RNF138-depleted cells. Taken together, these results suggest that RNF138 promotes the homologous recombination repair pathway.


Assuntos
Rad51 Recombinase/metabolismo , Recombinação Genética , Ubiquitina-Proteína Ligases/metabolismo , Cromatina/química , Ensaio Cometa , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Células HCT116 , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Espectrometria de Massas , Microscopia de Fluorescência , Proteínas Nucleares/genética , Fosforilação , Plasmídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Reparo de DNA por Recombinação , Ubiquitinação , Zinco/química , Dedos de Zinco
11.
J Biol Chem ; 291(26): 13679-88, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129234

RESUMO

5-Hydroxymethylcytosine (5hmC) is an epigenetic modification that is generated by ten-eleven translocation (TET) protein-mediated oxidation of 5-methylcytosine (5mC). 5hmC is associated with transcription regulation and is decreased in many cancers including melanoma. Accumulating evidence has suggested that 5hmC is functionally distinct from 5mC. Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) is the first known specific 5hmC reader that has higher affinity to 5hmC than 5mC, suggesting that UHRF2 might mediate 5hmC's function. Structural analysis has revealed the molecular mechanism of UHRF2-5hmC binding in vitro, but it is not clear how UHRF2 recognizes 5hmC in vivo In this study, we have identified zinc figure protein 618 (ZNF618) as a novel binding partner of UHRF2. ZNF618 specifically interacts with UHRF2 but not its paralog UHRF1. Importantly, ZNF618 co-localizes with UHRF2 at genomic loci that are enriched for 5hmC. The ZNF618 chromatin localization is independent of its interaction with UHRF2 and is through its first two zinc fingers. Instead, ZNF618 regulates UHRF2 chromatin localization. Collectively, our study suggests that ZNF618 is a key protein that regulates UHRF2 function as a specific 5hmC reader in vivo.


Assuntos
Cromatina/metabolismo , Citosina/análogos & derivados , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , 5-Metilcitosina/análogos & derivados , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/genética , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/genética
12.
Cell Cycle ; 14(21): 3454-60, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26566864

RESUMO

DNA damage response is required for male fertility. DNA damage repair mediates recombination between homologous chromosomes in meiotic prophase, which is essential for proper chromosome segregation during meiotic division. Interestingly, some DNA damage response proteins are also required for the survival of premeiotic germ cells, but their roles in these cells are still unclear. CHFR was recently shown to participate in DNA damage response, but it remains to be established if CHFR is required for male fertility. In this study, we characterized Chfr knockout male mice and found that around 30% of them were infertile. The onset of spermatogenesis was delayed and there was significant increase in apoptosis in premeiotic germ cells. This resulted in complete loss of germ cells in testes in 3 months and azoospermia in these mice. We further demonstrated that ATM activation was compromised in the testes of these mice. Therefore, CHFR is important for the survival of male premeiotic germ cells, which is likely through maintaining genomic stability in spermatogonial stem cells.


Assuntos
Azoospermia/enzimologia , Meiose , Espermatogênese , Espermatozoides/enzimologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores Etários , Animais , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Azoospermia/genética , Azoospermia/patologia , Azoospermia/fisiopatologia , Sobrevivência Celular , Ativação Enzimática , Fertilidade , Predisposição Genética para Doença , Instabilidade Genômica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , Transdução de Sinais , Espermatozoides/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
13.
Cell Cycle ; 14(4): 516-25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25565522

RESUMO

During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.


Assuntos
Proteínas de Transporte/metabolismo , Troca Genética/fisiologia , Reparo do DNA/fisiologia , Prófase/fisiologia , Cromossomos Sexuais/fisiologia , Animais , Quebras de DNA de Cadeia Dupla , Masculino , Camundongos , Modelos Biológicos , Cromossomos Sexuais/patologia , Ubiquitina-Proteína Ligases
14.
J Biol Chem ; 290(2): 851-60, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25451918

RESUMO

The maintenance of DNA methylation in nascent DNA is a critical event for numerous biological processes. Following DNA replication, DNMT1 is the key enzyme that strictly copies the methylation pattern from the parental strand to the nascent DNA. However, the mechanism underlying this highly specific event is not thoroughly understood. In this study, we identified topoisomerase IIα (TopoIIα) as a novel regulator of the maintenance DNA methylation. UHRF1, a protein important for global DNA methylation, interacts with TopoIIα and regulates its localization to hemimethylated DNA. TopoIIα decatenates the hemimethylated DNA following replication, which might facilitate the methylation of the nascent strand by DNMT1. Inhibiting this activity impairs DNA methylation at multiple genomic loci. We have uncovered a novel mechanism during the maintenance of DNA methylation.


Assuntos
Antígenos de Neoplasias/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA Topoisomerases Tipo II/genética , Proteínas de Ligação a DNA/genética , Antígenos de Neoplasias/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Replicação do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Hidrólise , Ligação Proteica/genética , Ubiquitina-Proteína Ligases
15.
Genes Dev ; 27(16): 1752-68, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23964092

RESUMO

Poly-ADP-ribosylation is a unique post-translational modification participating in many biological processes, such as DNA damage response. Here, we demonstrate that a set of Forkhead-associated (FHA) and BRCA1 C-terminal (BRCT) domains recognizes poly(ADP-ribose) (PAR) both in vitro and in vivo. Among these FHA and BRCT domains, the FHA domains of APTX and PNKP interact with iso-ADP-ribose, the linkage of PAR, whereas the BRCT domains of Ligase4, XRCC1, and NBS1 recognize ADP-ribose, the basic unit of PAR. The interactions between PAR and the FHA or BRCT domains mediate the relocation of these domain-containing proteins to DNA damage sites and facilitate the DNA damage response. Moreover, the interaction between PAR and the NBS1 BRCT domain is important for the early activation of ATM during DNA damage response and ATM-dependent cell cycle checkpoint activation. Taken together, our results demonstrate two novel PAR-binding modules that play important roles in DNA damage response.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Dano ao DNA/fisiologia , Pontos de Checagem do Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligases/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
16.
Nat Commun ; 4: 2105, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23812044

RESUMO

During meiotic prophase in males, the sex chromosomes partially synapse to form the XY body, a unique structure that recruits proteins involved in the DNA damage response, which is believed to be important for silencing of the sex chromosomes. It remains elusive how the DNA damage response in the XY body is regulated. Here we show that H2AX-MDC1-RNF8 signaling, which is well characterized in somatic cells, is dispensable for the recruitment of proteins to the unsynapsed axes in the XY body. On the other hand, the DNA damage response that spreads over the sex chromosomes is largely similar to that in somatic cells. This analysis shows that there are important differences between the regulation of the DNA damage response at the XY body and at DNA damage sites in somatic cells.


Assuntos
Dano ao DNA , Meiose , Cromossomos Sexuais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Pareamento Cromossômico , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Estágio Paquíteno , Estrutura Terciária de Proteína , Transporte Proteico , Espermatócitos/citologia , Espermatócitos/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Neurobiol Dis ; 45(1): 219-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21871565

RESUMO

PDSS2 is a gene that encodes one of the two subunits of trans-prenyl diphosphate synthase that is essential for ubiquinone biosynthesis. It is known that mutations in PDSS2 can cause primary ubiquinone deficiency in humans and a similar disease in mice. Cerebellum is the most often affected organ in ubiquinone deficiency, and cerebellar atrophy has been diagnosed in many infants with this disease. In this study, two Pdss2 conditional knockout mouse lines directed by Pax2-cre and Pcp2-cre were generated to investigate the effect of ubiquinone deficiency on cerebellum during embryonic development and in adulthood, respectively. The Pdss2(f/-); Pax2-cre mouse recapitulates some symptoms of ubiquinone deficiency in infants, including severe cerebellum hypoplasia and lipid accumulation in skeletal muscles at birth. During early cerebellum development (E12.5-14.5), Pdss2 knockout initially causes the delay of radial glial cell growth and neuron progenitor migration, so the growth of mutant cerebellum is retarded. During later development (E15.5-P0), increased ectopic apoptosis of neuroblasts and impaired cell proliferation result in the progression of cerebellum hypoplasia in the mutant. Thus, the mutant cerebellum contains fewer neurons at birth, and the cells are disorganized. The developmental defect of mutant cerebellum does not result from reduced Fgf8 expression before E12.5. Electron microscopy reveals mitochondrial defects and increased autophagic-like vacuolization that may arise in response to abnormal mitochondria in the mutant cerebellum. Nevertheless, the mutant mice die soon after birth probably due to cleft palate and micrognathia, which may result from Pdss2 knockout caused by ectopic Pax2-cre expression in the first branchial arch. On the other hand, the Pdss2(f/-); Pcp2-cre mouse is healthy at birth but gradually loses cerebellar Purkinje cells and develops ataxia-like symptoms at 9.5 months; thus this conditional knockout mouse may serve as a model for ubiquinone deficiency in adult patients. In conclusion, this study provides two mouse models of Pdss2 based ubiquinone deficiency. During cerebellum development, Pdss2 knockout results in severe cerebellum hypoplasia by impairing cell migration and eliciting ectopic apoptosis, whereas Pdss2 knockout in Purkinje cells at postnatal stages leads to the development of cerebellar ataxia.


Assuntos
Alquil e Aril Transferases/genética , Ataxia Cerebelar/genética , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Marcha/fisiologia , Células de Purkinje/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Apoptose/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Ataxia Cerebelar/metabolismo , Cerebelo/metabolismo , Camundongos , Camundongos Knockout , Ubiquinona/metabolismo , Caminhada/fisiologia
18.
Nat Struct Mol Biol ; 18(7): 761-8, 2011 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-21706008

RESUMO

Protein ubiquitination is a crucial component of the DNA damage response. To study the mechanism of the DNA damage-induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Notably, DNA damage-induced activation of ATM kinase is suppressed in cells deficient in both RNF8 and Chfr (double-knockout, or DKO), and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We present evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4 Lys16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and Chfr affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin-remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Acetilação , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Células Cultivadas , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Ativação Enzimática , Instabilidade Genômica , Histonas/metabolismo , Linfoma de Células T/genética , Camundongos , Camundongos Knockout , Proteínas de Ligação a Poli-ADP-Ribose , Radiação Ionizante , Transativadores/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
19.
Huan Jing Ke Xue ; 31(9): 2113-7, 2010 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-21072932

RESUMO

When SBR with sodium acetate as the sole carbon source and operated under alternative anaerobic and aerobic condition had achieved a good performance in phosphate removal, it was shifted to completely aerobic treatment system, and found that a good phosphorus removal with removal efficiency of the highest of 73.9%, the lowest of 40% and an average of about 50% was still achieved. The phosphate removal could last 80 cycles before regeneration. Phosphate content of sludge in the SBR increased from 1.43% to 6.56%. PHB and glycogen in the sludge were 27 mg/g and 26 mg/g, respectively. Both of them in the sludge during the whole cycle were of slight variation. Based on analysis of carbon consumption and phosphate absorption as well as their relationship, it is considered that this enhanced biological phosphorus removal in single aerobic process is due to that, the sludge in the system can use ATP released from aerobic oxidation of sodium acetate after acclimation to condition of sodium acetate as the sole carbon to synthesize poly-P granule in cell to a certain content.


Assuntos
Reatores Biológicos , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Bactérias Aeróbias/fisiologia , Biodegradação Ambiental , Esgotos/química
20.
Dev Cell ; 18(3): 371-84, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20153262

RESUMO

During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Espermatogênese/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Sequência de Bases , Histona Acetiltransferases/metabolismo , Histonas/química , Masculino , Meiose/genética , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Nucleossomos/ultraestrutura , RNA Interferente Pequeno/genética , Espermátides/metabolismo , Espermátides/ultraestrutura , Espermatogênese/genética , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...