Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Behav ; 14(4): e3487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648385

RESUMO

INTRODUCTION: Demyelination is a key factor in axonal degeneration and neural loss, leading to disability in multiple sclerosis (MS) patients. Transforming growth factor beta activated kinase 1 (TAK1) is a critical molecule involved in immune and inflammatory signaling pathways. Knockout of microglia TAK1 can inhibit autoimmune inflammation of the brain and spinal cord and improve the outcome of MS. However, it is unclear whether inhibiting TAK1 can alleviate demyelination. METHODS: Eight-week-old male c57bl/6j mice were randomly divided into five groups: (a) the control group, (b) the group treated with cuprizone (CPZ) only, (c) the group treated with 5Z-7-Oxozaenol (OZ) only, and (d) the group treated with both cuprizone and 15 µg/30 µg OZ. Demyelination in the mice of this study was induced by administration of CPZ (ig) at a daily dose of 400 mg/kg for consecutive 5 weeks. OZ was intraperitoneally administered at mentioned doses twice a week, starting from week 3 after beginning cuprizone treatment. Histology, rotarod test, grasping test, pole test, Western blot, RT-PCR, and ELISA were used to evaluate corpus callosum demyelination, behavioral impairment, oligodendrocyte differentiation, TAK1 signaling pathway expression, microglia, and related cytokines. RESULTS: Our results demonstrated that OZ protected against myelin loss and behavior impairment caused by CPZ. Additionally, OZ rescued the loss of oligodendrocytes in CPZ-induced mice. OZ inhibited the activation of JNK, p65, and p38 pathways, transformed M1 polarized microglia into M2 phenotype, and increased brain-derived neurotrophic factor (BDNF) expression to attenuate demyelination in CPZ-treated mice. Furthermore, OZ reduced the expression of proinflammatory cytokines and increases anti-inflammatory cytokines in CPZ-treated mice. CONCLUSION: These findings suggest that inhibiting TAK1 may be an effective approach for treating demyelinating diseases.


Assuntos
Cuprizona , Doenças Desmielinizantes , Lactonas , Camundongos Endogâmicos C57BL , Microglia , Resorcinóis , Zearalenona/administração & dosagem , Animais , Cuprizona/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , MAP Quinase Quinase Quinases/metabolismo , Zearalenona/farmacologia , Zearalenona/análogos & derivados , Polaridade Celular/efeitos dos fármacos , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Modelos Animais de Doenças
2.
Ecotoxicol Environ Saf ; 272: 116016, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38301580

RESUMO

Rhizo-microbe recruited by hyperaccumulating plants are crucial for the extraction of metals from contaminated soils. It is important, but difficult, to identify the specific rhizosphere microbes of hyperaccumulators shaped by root exudation. Continuous 13CO2 labeling, microbial DNA-based stable isotope probing (DNA-SIP), and high throughput sequencing were applied to identify those rhizosphere microorganisms using exudates from the Cd hyperaccumulator Sedum alfredii. In contrast to its non-hyperaccumulating ecotype (NAE), the hyperaccumulating ecotype (HAE) of S. alfredii strongly changed the rhizosphere environment and extracted a 5-fold higher concentration of Cd from contaminated soil. Although both HAE and NAE harbored Streptomyces, Massilia, Bacillus, and WPS-2 Uncultured Bacteria with relative abundance of more than 1% in the rhizosphere associated with plant growth and immunity, the HAE rhizosphere specifically recruited Rhodanobacter (2.66%), Nocardioides (1.16%), and Burkholderia (1.01%) through exudates to benefit the extraction of Cd from soil. Different from the bacterial network with weak cooperation in the NAE rhizosphere, a closed-loop bacterial network shaped by exudates was established in the HAE rhizosphere to synergistically resist Cd. This research reveals a specific rhizosphere bacterial community induced by exudates assisted in the extraction of Cd by S. alfredii and provides a new perspective for plant regulation of the rhizo-microbe community beneficial for optimizing phytoremediation.


Assuntos
Microbiota , Sedum , Poluentes do Solo , Cádmio/análise , Rizosfera , Poluentes do Solo/análise , Raízes de Plantas/química , Bactérias/genética , Biodegradação Ambiental , Solo , DNA
3.
Nat Commun ; 14(1): 7971, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042894

RESUMO

Ketamine produces rapid antidepressant effects at sub-anesthetic dosage through early and sustained activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), however, the exact molecular mechanism still remains unclear. Transmembrane AMPAR regulatory protein-γ8 (TARP-γ8) is identified as one of AMPAR auxiliary subunits, which controls assemblies, surface trafficking and gating of AMPARs. Here, we show that ketamine rescues both depressive-like behaviors and the decreased AMPARs-mediated neurotransmission by recruitment of TARP-γ8 at the postsynaptic sites in the ventral hippocampus of stressed male mice. Furthermore, the rapid antidepressant effects of ketamine are abolished by selective blockade of TARP-γ8-containing AMPAR or uncoupling of TARP-γ8 from PSD-95. Overexpression of TARP-γ8 reverses chronic stress-induced depressive-like behaviors and attenuation of AMPARs-mediated neurotransmission. Conversely, knockdown of TARP-γ8 in excitatory neurons prevents the rapid antidepressant effects of ketamine.


Assuntos
Ketamina , Camundongos , Animais , Masculino , Ketamina/farmacologia , Receptores de AMPA/fisiologia , Neurônios/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Antidepressivos/farmacologia
4.
J Bone Oncol ; 42: 100500, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664160

RESUMO

Bone metastasis of breast cancer considerably reduces not only overall survival but also health-related quality of life due to pain, fatigue, and skeletal-related events. OBJECTIVE: This study aims to analyze the research hotspots and trends of global research on bone metastasis of breast cancer in the past 20 years to provide a reference for relevant personnel in this field to carry out academic research. METHODS: The literature related to bone metastasis of breast cancer from 2002 to 2021 was retrieved from the Web of Science. The bibliometric research method and VOSviewer and CiteSpace were used to analyze the publications, and the research status and development direction in the last 20 years were visualized. RESULTS: A total of 7381 articles were included. The number of global publications is increasing every year. The United States contributes the most to global research, with the most citations and the highest H-index. The journal Cancer Research published the most articles on this issue. "Macrophage" and "skeletal related event" will receive more attention and be the next popular hotspot in the future. CONCLUSION: There will be an increasing number of publications on bone metastasis of breast cancer based on current global trends. The United States made the largest contribution to this field. More focus will be placed on the mechanisms of metastasis research, which may be the next popular topic in bone metastasis of breast cancer.

5.
Front Plant Sci ; 14: 1185377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636094

RESUMO

Single-cell and spatial transcriptomics have diverted researchers' attention from the multicellular level to the single-cell level and spatial information. Single-cell transcriptomes provide insights into the transcriptome at the single-cell level, whereas spatial transcriptomes help preserve spatial information. Although these two omics technologies are helpful and mature, further research is needed to ensure their widespread applicability in plant studies. Reviewing recent research on plant single-cell or spatial transcriptomics, we compared the different experimental methods used in various plants. The limitations and challenges are clear for both single-cell and spatial transcriptomic analyses, such as the lack of applicability, spatial information, or high resolution. Subsequently, we put forth further applications, such as cross-species analysis of roots at the single-cell level and the idea that single-cell transcriptome analysis needs to be combined with other omics analyses to achieve superiority over individual omics analyses. Overall, the results of this review suggest that combining single-cell transcriptomics, spatial transcriptomics, and spatial element distribution can provide a promising research direction, particularly for plant research.

6.
Ecotoxicol Environ Saf ; 263: 115216, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421894

RESUMO

Cadmium (Cd) and arsenic (As) in co-contaminated soil can enter the human body harming health via the food chain, such as vegetables. Biochar derived from waste has been used to reduce heavy metal uptake by plant, but long-term effects of biochar under Cd and As co-contaminated soil needs to be investigated. A following mustard (Brassica juncea) was grown on co-contaminated soil amended with different raw materials of biochar including biochars pyrolyzed by lignite coal (LCB), rice straw (RSB), silkworm excrement (SEB), and sugar refinery sludge (SSB). The results showed that compared to the control, Cd and As contents of mustard shoot in SSB treatment decreased by 45-49% and 19-37% in two growing seasons, respectively, which was the most effective among 4 biochars. This probably due to SSB owns more abundant Fe-O functional groups. Biochar also altered the microbial community composition, specifically SSB increased proteobacteria abundance by 50% and 80% in the first and second growing seasons, thereby promoted the simultaneous immobilization of Cd and As in soils which may reduce the potential risks to humans. In summary, considering the long-term effects and security of SSB application on mustard, not only is it an effective waste recycle option, but it should also be promoted as a promising approach for safe vegetable production in Cd and As co-contaminated soils.


Assuntos
Arsênio , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Mostardeira , Arsênio/toxicidade , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Carvão Vegetal , Verduras , Solo
7.
Cell Death Discov ; 9(1): 251, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460539

RESUMO

The ketogenic diet (KD) is a low carbohydrate and high-fat protein diet. It plays a protective role in neurodegenerative diseases by elevating the levels of ketone bodies in blood, regulating central and peripheral metabolism and mitochondrial functions, inhibiting neuroinflammation and oxidative stress, and altering the gut microbiota. However, studies on ketogenic therapy for Parkinson's disease (PD) are still in their infancy. Therefore, we examined the possible protective effect of KD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, examined the mouse gut microbiota and its metabolites, and performed transcriptomics and metabolomics on the substantia nigra of mice. Our results showed that a long-term medium-chain triglyceride KD (MCT-KD) significantly reduced MPTP-induced damage to dopaminergic (DA) neurons, exerted antioxidant stress through the PI3K/Akt/Nrf2 pathway, and reversed oxidative stress in DA neurons. The MCT-KD also reduced mitochondrial loss, promoted ATP production, and inhibited the activation of microglia to protect DA neurons in MPTP-induced PD mice. MCT-KD altered the gut microbiota and consequently changed the metabolism of substantia nigra neurons through gut microbiota metabolites. Compared to the MPTP group, MCT-KD increased the abundance of gut microbiota, including Blautia and Romboutsia. MCT-KD also affects purine metabolism in the substantia nigra pars compacta (SNpc) by altering fecal metabolites. This study shows that MCT-KD has multiple protective effects against PD.

8.
J Hazard Mater ; 457: 131686, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37270958

RESUMO

Sulfur (S) fertilizers, water management and crop rotation are important agronomic practices, related to soil heavy metal bioavailability. However, the mechanisms of microbial interactions remain unclear. Herein, we investigated how S fertilizers (S0 and Na2SO4) and water management affected plant growth, soil cadmium (Cd) bioavailability, and rhizospheric bacterial communities in the Oryza sativa L. (rice)-Sedum alfredii Hance (S. alfredii) rotation system through 16S rRNA gene sequencing and ICP-MS analysis. During rice cultivation, continuous flooding (CF) was better than alternating wetting and drying (AWD). CF treatment decreased soil Cd bioavailability by the promotion of insoluble metal sulfide production and soil pH, thus lowering Cd accumulation in grains. S application recruited more S-reducing bacteria in the rhizosphere of rice, whilst Pseudomonas promoted metal sulfide production and rice growth. During S. alfredii cultivation, S fertilizer recruited S-oxidizing and metal-activating bacteria in the rhizosphere. Thiobacillus may oxidize metal sulfides and enhance Cd and S absorption into S. alfredii. Notably, S oxidation decreased soil pH and elevated Cd content, thereby promoting S. alfredii growth and Cd absorption. These findings showed rhizosphere bacteria were involved in Cd uptake and accumulation in the rice-S. alfredii rotation system, thus providing useful information for phytoremediation coupled with argo-production.


Assuntos
Microbiota , Oryza , Sedum , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Rizosfera , RNA Ribossômico 16S/análise , Fertilizantes/análise , Raízes de Plantas/microbiologia , Poluentes do Solo/análise , Bactérias/genética , Solo/química , Enxofre/análise , Abastecimento de Água , Fertilização , Sulfetos/análise
9.
Ecotoxicol Environ Saf ; 260: 115076, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257346

RESUMO

Understanding the influence of the heavy metal cadmium (Cd) on the phyllosphere microbiome of hyperaccumulator plants is crucial for enhancing phytoremediation. The characteristics of the phyllosphere of Sedum alfredii Hance, a hyperaccumulator plant, were investigated using 16S rRNA and internal transcribed spacer amplicon sequencing of powdery mildew-infected leaves treated or untreated with Cd. The results showed that the colonization of powdery mildew caused severe chlorosis and necrosis in S. alfredii leaves, and the relative abundance of Leotiomycetes in infected leaves increased dramatically and significantly decreased phyllosphere microbiome diversity. However, S. alfredii preferentially accumulated higher concentrations of Cd in the leaves of infected plants than in uninfected plants by powdery mildew, which in turn significantly inhibited powdery mildew colonization in leaves; the relative abundance of the fungal class Leotiomycetes in infected leaves decreased, and alpha and beta diversities of the phyllosphere microbiome significantly increased with Cd treatment in the infected plants. In addition, the inter-kingdom networks in the microbiota of the infected leaves treated with Cd presented many nodes and edges, and the highest inter-kingdom modularity compared to the untreated infected leaves, indicating a highly connected microbial community. These results suggest that Cd significantly inhibits powdery mildew colonization by altering the composition of the phyllosphere microbiome in S. alfredii leaves, paving the way for efficient heavy metal phytoremediation and providing a new perspective on defense strategies against heavy metals.


Assuntos
Metais Pesados , Microbiota , Sedum , Poluentes do Solo , Cádmio/análise , Sedum/genética , RNA Ribossômico 16S , Biodegradação Ambiental , Raízes de Plantas/química , Poluentes do Solo/análise
12.
J Hazard Mater ; 441: 129840, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36088879

RESUMO

Hyperaccumulators are plant species that tolerate and accumulate very high concentrations of toxic metals, including Cd. Hyperaccumulation of heavy metals is reported to benefit plant biotic resistance; however, no prior study has examined the possible role of toxic metals on abiotic stress resistance in hyperaccumulators. A preliminary experiment found that Cd significantly improved plant growth of a hyperaccumulator, Sedum alfredii Hance, under heat stress. This study investigated the possible role of Cd in S. alfredii's heat resistance, using infrared thermography, transmission electron microscopy (TEM), real-time quantitative polymerase chain reaction (RTqPCR), and high-throughput sequencing. The results showed that high temperatures irreversibly damaged stomatal function, chloroplast structure, photosynthesis in S. alfredii, and lowered survival rates to 25%. However, Cd application significantly decreased the leaf temperature of S. alfredii and increased the survival rate to 75%. Cd penetrated the guard cells, restored stomatal function, and mitigated excessive water loss from S. alfredii under heat stress. Moreover, it activated antioxidant enzymes, promoted phytohormone biosynthesis, and upregulated a series of unigenes, thereby augmenting heat resistance in S. alfredii. These results indicate that Cd effectively improved thermotolerance in S. alfredii by regulating stomatal movement and antioxidant systems via upregulation of phytohormones and heat shock proteins.


Assuntos
Sedum , Poluentes do Solo , Termotolerância , Antioxidantes/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Proteínas de Choque Térmico/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/metabolismo , Água
13.
Front Plant Sci ; 14: 1335843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38445102

RESUMO

Aims: Citruses often occur with imbalance in iron nutrition in coastal saline-alkali lands, which severely limits the yield and quality of the fruit. In the rhizosphere, the salt content plays a crucial role in reducing uptake of iron, as well as the activity and abundance of bacteria. However, few studies have explored how salt content affects the effectiveness of iron and the community structure of bacteria across different vertical spatial scales. Methods: We investigated the citrus rhizosphere (0-30 cm) and bulk (0-60 cm) soil microenvironments of the coastal saline soil were analyzed using the 16S rRNA amplicon and inductively coupled plasma-optical emission spectroscopy. Results: We found that the nutrient-related elements in the rhizosphere and bulk soil decreased with increasing soil depth, while the salinity-related elements showed the opposite trend. The nutrient-related element content in the rhizosphere was higher than that in the bulk, whereas the salinity-alkaline-related element content was lower than that in the bulk. The structure and diversity of bacterial communities are affected by the rhizosphere and soil depth. In the bulk, there are enriched bacteria such as WB1-A12, Nitrospiraceae and Anaerolineae that are tolerant to salt-alkali stress. In the rhizosphere, bacteria that promote plant nutrient absorption and secretion of iron carriers, such as Pseudomonas, Streptomyces, and Duganella, are prominent. Conclusions: The soil depth and rhizosphere affect soil nutrients and saline alkali-related factors. Changes in soil depth and rhizosphere determine the structure and diversity of bacterial communities. Rhizosphere enhances iron absorption promoting bacteria to alleviate iron deficiency stress in saline-alkali soils. Our results indicate that citrus roots maybe can resist the stress of iron deficiency in saline-alkali soils by enhancing iron absorption promoting bacteria.

14.
Environ Pollut ; 315: 120410, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240968

RESUMO

Metallothioneins (MTs), a group of cysteine-rich proteins, are effective chelators of cadmium (Cd) and play a key role in plant Cd detoxification. However, little is known about the role of single cysteine (Cys) residues in the MTs involved in the adaptation of plants to Cd stress, especially, in hyperaccumulators. In the present study, we functionally characterised SaMT3 in S. alfredii, a Cd/Zn hyperaccumulator native to China. Our results showed that the C- and N- terminal regions of SaMT3 had differential functional natures in S. alfredii and determined its Cd hypertolerance and detoxification. Two CXC motifs within the C-terminal region were revealed to play a crucial role in Cd sensing and binding, whereas the four Cys-residues within the N-terminal region were involved in scavenging reactive oxygen species (ROS). An S. alfredii transgenic system based on callus transformation was developed to further investigate the in-planta gene function. The SaMT3-overexpressing transgenic plant roots were more tolerant to Cd than those of wild-type plants. Knockout of SaMT3 resulted in significantly decreased Cd concentrations and increased ROS levels after exposure to Cd stress. We demonstrated the SaMT3-mediated adaptation strategy in S. alfredii, which uses metal chelation and ROS scavenging in response to Cd stress. Our results further reveal the molecular mechanisms underlying Cd detoxification in hyperaccumulating plants, as well as the relation between Cys-related motifs and the metal binding properties of MTs. This research provides valuable insights into the functions of SaMT3 in S. alfredii, and improves our understanding of Cd hyperaccumulation in plants.


Assuntos
Sedum , Poluentes do Solo , Sedum/genética , Sedum/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raízes de Plantas/metabolismo , Metalotioneína/metabolismo , Quelantes/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Biodegradação Ambiental
15.
Ren Fail ; 44(1): 1227-1235, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35848372

RESUMO

BACKGROUND: The systemic inflammatory response index (SIRI), a novel inflammation maker, has proven to be associated with prognostic outcomes in various diseases. However, few studies have been conducted assessing how SIRI may influence outcomes of patients on peritoneal dialysis (PD). Herein, we assessed the predictive value of SIRI on mortality all-cause mortality, including cardiovascular disease (CVD) in PD patients. METHODS: A total of 646 PD patients were enrolled in this study. PD patients received regular PD treatments at the Zhujiang Hospital from 1 January 2011 to 31 December 2018. SIRI values could be computed as follows: neutrophil count × monocyte count/lymphocyte count. Patients were divided into two groups according to the median level of SIRI. Cox regression analysis and Kaplan-Meier methods were applied to analyze the relationship between SIRI and mortality outcomes in PD patients. RESULTS: During the median 31-month follow-up period, 97 (15.0%) PD patients died from all-causes, and 47 (49.0%) died of CVD. Kaplan-Meier analyses revealed that a high SIRI corresponded to the high mortality of all-cause deaths, including CVD (both p < 0.001) in patients on PD. After adjusting for potential confounders, the higher SIRI level was significantly associated with an increased all-cause mortality (HR: 2.007, 95% CI: 1.304-3.088, p = 0.002) and cardiovascular mortality (HR: 2.847, 95% CI: 1.445-5.608, p = 0.002). CONCLUSIONS: SIRI was a promising predictor of mortality in PD patients, with a higher SIRI corresponding to increased risk of mortality.


Assuntos
Doenças Cardiovasculares , Diálise Peritoneal , Doenças Cardiovasculares/etiologia , Humanos , Inflamação , Prognóstico , Estudos Retrospectivos
16.
Toxics ; 10(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893843

RESUMO

Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.

17.
Ecotoxicol Environ Saf ; 241: 113795, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753274

RESUMO

Sedum alfredii Hance is a perennial herb native to China that can particularly be found in regions with abandoned Pb/Zn mines. It is a Cd/Zn hyperaccumulator that is highly tolerant to Pb, Cu, Ni, and Mn, showing potential for phytoremediation of soils contaminated with multiple heavy metals. A better understanding of how this species responds to different heavy metals would advance the phytoremediation efficiency. In this study, transcriptomic regulation of S. alfredii roots after Cd, Zn, Pb, and Cu exposure was analyzed to explore the candidate genes involved in multi-heavy metal tolerance. Although Zn and Cd, Pb and Cu had similar distribution patterns in S. alfredii, distinct expression patterns were exhibited among these four metal treatments, especially about half of the differentially expressed genes were upregulated under Cu treatment, suggesting that it utilizes distinctive and flexible strategies to cope with specific metal stress. Most unigenes regulated by Cu were enriched in catalytic activity, whereas the majority of unigenes regulated by Pb had unknown functions, implying that S. alfredii may have a unique strategy coping with Pb stress different from previous cognition. The unigenes that were co-regulated by multiple heavy metals exhibited functions of antioxidant substances, antioxidant enzymes, transporters, transcription factors, and cell wall components. These metal-induced responses at the transcriptional level in S. alfredii were highly consistent with those at the physiological level. Some of these genes have been confirmed to be related to heavy metal absorption and detoxification, and some were found to be related to heavy metal tolerance for the first time in this study, like Metacaspase-1 and EDR6. These results provide a theoretical basis for the use of genetic engineering technology to modify plants by enhancing multi-metal tolerance to promote phytoremediation efficiency.


Assuntos
Biodegradação Ambiental , Metais Pesados , Sedum , Poluentes do Solo , Adaptação Fisiológica , Antioxidantes/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Chumbo/análise , Metais Pesados/análise , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Sedum/fisiologia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
18.
BMC Gastroenterol ; 22(1): 287, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668359

RESUMO

BACKGROUND: For patients taking esophagogastroduodenoscopy (EGD), sedation should ideally be used individually based on patients' comfort and tolerance level. However, currently there is no valid predictive tool. We undertook this study to develop and temporally validate a self-assessment tool for predicting discomfort and tolerance in Chinese patients undergoing EGD. METHODS: We recruited 1522 patients undergoing routine diagnostic EGD without sedation. We collected candidate predictor variables before endoscopy and evaluated discomfort and tolerance with a 5-point visual analogue scale after the procedure. We developed logistic regression predictive models based on the first 2/3 of participants, and evaluated the calibration and discrimination of the models in the later 1/3 of patients. RESULTS: 30.2% and 23.0% participants reported severe discomfort or poor tolerance to EGD respectively. The predictive factors in the model for discomfort included sex, education, expected level of discomfort, and anxiety before endoscopy. The model for tolerance included income, expected level of discomfort, and anxiety before endoscopy. In the validation population, the established models showed a moderate discriminative ability with a c-index of 0.74 for discomfort and 0.78 for tolerance. Hosmer-Lemeshow test suggested the models had fine calibration ability (discomfort: P = 0.37, tolerance: P = 0.41). CONCLUSIONS: Equations for predicting discomfort and tolerance in Chinese patients undergoing EGD demonstrated moderate discrimination and variable calibration. Further studies are still required to validate these tools in other population. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR1800020236).


Assuntos
Endoscopia do Sistema Digestório , Autoavaliação (Psicologia) , Ansiedade/etiologia , China , Endoscopia do Sistema Digestório/efeitos adversos , Endoscopia do Sistema Digestório/métodos , Endoscopia Gastrointestinal/métodos , Humanos , Medição da Dor
19.
Life (Basel) ; 12(5)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629434

RESUMO

Zn pollution is a potential toxicant for agriculture and the environment. Sedum alfredii is a Zn/Cd hyperaccumulator found in China and has been proven as a useful resource for the phytoremediation of Zn-contaminated sites. However, the molecular mechanism of Zn uptake in S. alfredii is limited. In this study, the function of SaPCR2 on Zn uptake in S. alfredii was identified by gene expression analysis, yeast function assays, Zn accumulation and root morphology analysis in transgenic lines to further elucidate the mechanisms of uptake and translocation of Zn in S. alfredii. The results showed that SaPCR2 was highly expressed in the root elongation zone of the hyperaccumulating ecotype (HE) S. alfredii, and high Zn exposure downregulated the expression of SaPCR2 in the HE S. alfredii root. The heterologous expression of SaPCR2 in yeast suggested that SaPCR2 was responsible for Zn influx. The overexpression of SaPCR2 in the non-hyperaccumulating ecotype (NHE) S. alfredii significantly increased the root uptake of Zn, but did not influence Mn, Cu or Fe. SR-µ-XRF technology showed that more Zn was distributed in the vascular buddle tissues, as well as in the cortex and epidermis in the transgenic lines. Root morphology was also altered after SaPCR2 overexpression, and a severe inhibition was observed. In the transgenic lines, the meristematic and elongation zones of the root were lower compared to the WT, and Zn accumulation in meristem cells was also reduced. These results indicate that SaPCR2 is responsible for Zn uptake, and mainly functions in the root elongation zone. This research on SaPCR2 could provide a theoretical basis for the use of genetic engineering technology in the modification of crops for their safe production and biological enhancement.

20.
Exp Cell Res ; 417(1): 113161, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35447102

RESUMO

Breast cancer, the most prevalent malignancy in women, is also the leading cause of cancer-related deaths in women worldwide. The activation of the Wnt pathway plays a pivotal role in the metastatic abilities of breast cancer. In this study, IL1F6, MRGPRX1, and SEC14L3 were significantly correlated to breast cancer patients'overall survival based on TCGA-BRCA dataset. Although IL1F6, MRGPRX1 and SEC14L3 high expression were associated with better survival in breast cancer patients, SEC14L3 had the biggest survival benefit for breast cancer; therefore, SEC14L3 was selected for the subsequent investigation. SEC14L3 mRNA expression and protein levels within breast cancer cell lines decreased compared with normal human breast epithelial cells. Overexpressing SEC14L3 in breast cancer cells inhibited the malignant phenotypes of cancer cells, including the capacity of cells to migrate and invade. SEC14L3 overexpression decreased the levels of mesenchymal markers, whereas SEC14L3 knockdown facilitated the malignant behaviors of breast cancer cells. SEC14L3 overexpression also inhibited Wnt/ß-catenin activation. The Wnt agonist strengthened the malignant phenotypes of breast cancer cells; moreover, the anti-tumor effects of SEC14L3 overexpression were partially attenuated by the Wnt agonist. Conclusively, SEC14L3, which is underexpressed in breast cancer cells and tissues, could play a tumor-suppressive role in a Wnt/ß-catenin-related way.


Assuntos
Neoplasias da Mama , Via de Sinalização Wnt , beta Catenina , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Células MCF-7 , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...