Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 34055-34063, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37410953

RESUMO

Ionic conductive eutectogels have great application prospects in wearable strain sensors owing to their temperature tolerance, simplicity, and low cost. Eutectogels prepared by cross-linking polymers have good tensile properties, strong self-healing capacities, and excellent surface-adaptive adhesion. Herein, we emphasize for the first time the potential of zwitterionic deep eutectic solvents (DESs), in which betaine is a hydrogen bond acceptor. Polymeric zwitterionic eutectogels were prepared by directly polymerizing acrylamide in zwitterionic DESs. The obtained eutectogels owned excellent ionic conductivity (0.23 mS cm-1), superior stretchability (approximately 1400% elongation), self-healing (82.01%), self-adhesion, and wide temperature tolerance. Accordingly, the zwitterionic eutectogel was successfully applied in wearable self-adhesive strain sensors, which can adhere to skins and monitor body motions with high sensitivity and excellent cyclic stability over a wide temperature range (-80 to 80 °C). Moreover, this strain sensor owned an appealing sensing function on bidirectional monitoring. The findings in this work can pave the way for the design of soft materials with versatility and environmental adaptation.

2.
Nature ; 620(7976): 994-1000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290482

RESUMO

All-perovskite tandem solar cells promise higher power-conversion efficiency (PCE) than single-junction perovskite solar cells (PSCs) while maintaining a low fabrication cost1-3. However, their performance is still largely constrained by the subpar performance of mixed lead-tin (Pb-Sn) narrow-bandgap (NBG) perovskite subcells, mainly because of a high trap density on the perovskite film surface4-6. Although heterojunctions with intermixed 2D/3D perovskites could reduce surface recombination, this common strategy induces transport losses and thereby limits device fill factors (FFs)7-9. Here we develop an immiscible 3D/3D bilayer perovskite heterojunction (PHJ) with type II band structure at the Pb-Sn perovskite-electron-transport layer (ETL) interface to suppress the interfacial non-radiative recombination and facilitate charge extraction. The bilayer PHJ is formed by depositing a layer of lead-halide wide-bandgap (WBG) perovskite on top of the mixed Pb-Sn NBG perovskite through a hybrid evaporation-solution-processing method. This heterostructure allows us to increase the PCE of Pb-Sn PSCs having a 1.2-µm-thick absorber to 23.8%, together with a high open-circuit voltage (Voc) of 0.873 V and a high FF of 82.6%. We thereby demonstrate a record-high PCE of 28.5% (certified 28.0%) in all-perovskite tandem solar cells. The encapsulated tandem devices retain more than 90% of their initial performance after 600 h of continuous operation under simulated one-sun illumination.

3.
Front Microbiol ; 14: 1083319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260690

RESUMO

Introduction: Introducing beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) to agricultural systems may improve plant performance and soil fertility. However, whether bioinocula species composition affects plant growth and soil fertility, and whether fertilizer source influences AMF colonization have not been well characterized. The objectives of this research were to: (1) assess if AMF bioinocula of different species compositions improve raspberry (Rubus idaeus L.) performance and characteristics of soil fertility and (2) evaluate the impact of fertilizer source on AMF colonization. Methods: Five bioinocula with different AMF species compositions and three fertilizer sources were applied to tissue culture raspberry transplants in a randomized complete block design with eight replicates. Plants were grown in a greenhouse for 14 weeks and plant growth, tissue nutrient concentrations, soil fertility, and AMF root colonization were measured. Results: Shoot K and Zn concentrations as well as soil pH and K concentration increased in the Commercial Mix 1 treatment (Glomus, Gigaspora, and Paraglomus AMF species) compared to the non-inoculated control. RFI (raspberry field bioinoculum; uncharacterized AMF and other microbiota) increased soil organic matter (SOM), estimated nitrogen release (ENR), and soil copper (Cu) concentration compared to the non-inoculated control. Furthermore, plants receiving the Mix 1 or RFI treatments, which include more AMF species, had greater AMF root colonization than the remaining treatments. Plants receiving organic fertilizer had significantly greater AMF colonization than conventionally fertilized plants. Conclusion: Taken together, our data indicate that coupling organic fertilizers and bioinocula that include diverse AMF species may enhance raspberry growth and soil fertility.

4.
Sci Total Environ ; 856(Pt 2): 158904, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36261955

RESUMO

Acid rain has severely negatively impacted terrestrial ecosystems and biogeochemical cycles. However, the potential impacts of nitric acid rain (NAR) on soil nitrogen (N) fractions and fungal community diversity in northern subtropical forest soils remain largely unevaluated. In this study, treatments of NAR at pH = 4.5 (AR4.5), pH = 3.5 (AR3.5), and pH = 2.5 (AR2.5) were randomly sprayed in a typical Quercus acutissima Carruth. stand in northern subtropical China. The soil N fractions and soil fungal communities were analyzed after a 12-month experimental period. The results revealed that compared to the control, the soil total N (TN), microbial biomass N (MBN), hydrolysable ammonium N (HAN), amino-sugar N (ASN) and amino-acid N (AAN) contents decreased significantly by 19.61-13.07 %, 20.10-9.04 %, 60.41-28.87 %, 74.10-62.25 %, and 65.69-45.64 % under stronger acidity inputs (i.e., AR2.5 and AR3.5), respectively. Besides, the AR2.5 and AR3.5 treatments increased the α-diversity indices of soil fungal communities and altered the soil fungal community structure. Moreover, the NAR treatments represented an increase in the relative abundance of Ascomycota and Mortierellomycota and a decrease in that of Basidiomycota. Mortierella, Penicillium, and Tomentella can be used as indicator genera for changes in soil fungal community structures under NAR stress. Furthermore, AAN was the main environmental factor affecting soil fungal community at the phylum and genus levels. Cumulatively, findings from this research provide valuable insight into NAR's effects on N cycling and microbial communities in forest soils.


Assuntos
Chuva Ácida , Microbiota , Micobioma , Solo/química , Ácido Nítrico , Nitrogênio , Microbiologia do Solo , Florestas , China
5.
BMC Pregnancy Childbirth ; 22(1): 698, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088304

RESUMO

BACKGROUND: Fetal macrosomia is common occurrence in pregnancy, which is associated with several adverse prognosis both of maternal and neonatal. While, the accuracy of prediction of fetal macrosomia is poor. The aim of this study was to develop a reliable noninvasive prediction classifier of fetal macrosomia. METHODS: A total of 3600 samples of routine noninvasive prenatal testing (NIPT) data at 12+ 0-27+ 6 weeks of gestation, which were subjected to low-coverage whole-genome sequencing of maternal plasma cell-free DNA (cfDNA), were collected from three independent hospitals. We identified set of genes with significant differential coverages by comparing the promoter profiling between macrosomia cases and controls. We selected genes to develop classifier for noninvasive predicting, by using support vector machine (SVM) and logistic regression models, respectively. The performance of each classifier was evaluated by area under the curve (AUC) analysis. RESULTS: According to the available follow-up results, 162 fetal macrosomia pregnancies and 648 matched controls were included. A total of 1086 genes with significantly differential promoter profiling were found between pregnancies with macrosomia and controls (p < 0.05). With the AUC as a reference,the classifier based on SVM (CMA-A2) had the best performance, with an AUC of 0.8256 (95% CI: 0.7927-0.8586). CONCLUSIONS: Our study provides that assessing the risk of fetal macrosomia by whole-genome promoter nucleosome profiling of maternal plasma cfDNA based on low-coverage next-generation sequencing is feasible.


Assuntos
Ácidos Nucleicos Livres , Macrossomia Fetal , Estudos de Casos e Controles , China , Feminino , Macrossomia Fetal/diagnóstico , Macrossomia Fetal/genética , Humanos , Recém-Nascido , Nucleossomos , Gravidez , Estudos Retrospectivos
6.
Front Plant Sci ; 13: 918021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991427

RESUMO

The time delay in receiving conventional tissue nutrient analysis results caused red raspberry (Rubus idaeus L.) growers to be interested in rapid sap tests to provide real-time results to guide immediate nutrient management practices. However, sap analysis has never been conducted in raspberry. The present work aimed to evaluate the relationship of petiole sap nitrate (NO3 -), potassium (K+), and calcium (Ca2+) concentrations measured using compact ion meters and leaf tissue total nitrogen (TN), potassium (K), and calcium (Ca) concentrations measured using conventional tissue nutrient analysis. The relationship of petiole sap NO3 - and leaf tissue TN concentrations with plant growth and production variables was also explored. Fertilizer treatments of urea were surface applied to raised beds of established "Meeker" floricane red raspberry plots at control, low, medium, and high rates (0, 34, 67, and 101 kg N ha-1, respectively) in 2019 and 2020. The experiment was arranged in a randomized complete block design with three replications. Whole leaves were collected from representative primocanes in mid- and late- July and August 2019 and 2020 (i.e., four sampling time points per year). At each sampling time point, a subsample of leaves was used for petiole sap analyses of NO3 -, K+, and Ca2+ concentrations using compact ion meters, and conventional tissue testing of leaf tissue TN, K, and Ca concentrations, respectively. There were no interactions between N fertilizer rate and year nor between N fertilizer rate and sampling time. No significant differences were found due to N fertilizer rate for petiole sap NO3 -, K+, Ca2+ nor leaf tissue TN, K, Ca concentrations. However, significant year and sampling time effects occurred in measured petiole sap and leaf tissue nutrient concentrations. Overall, the correlations between petiole sap NO3 - and leaf tissue TN, petiole sap Ca2+ and leaf tissue Ca, petiole sap K+ and leaf tissue K concentrations were non-strong and inconsistent. Future research is warranted as the interpretation of correlations between raspberry petiole sap and leaf tissue nutrient concentrations were inconclusive.

7.
Sci Total Environ ; 847: 157635, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905962

RESUMO

Microplastics (MPs) are verified to affect the fate of ammonia (NH3) in agricultural soils. However, the impacts and mechanisms of MPs coupled with biochar (BC), a widely used agricultural conditioner, on NH3 losses are mostly untapped. The aim of this study was to investigate the mechanisms of common MPs (i.e., polyethylene, polyester, and polyacrylonitrile) and straw-derived BC on NH3 volatilization in rice-wheat rotation soils. Results showed that BC alone and MPs with BC (MPs + BC) reduced 5.5 % and 11.2-26.6 % cumulative NH3 volatilization than the control (CK), respectively, in the rice season. The increased nitrate concentration and soil cation exchange capacity were dominant contributors to the reduced soil NH3 volatilization in the rice season. BC and MPs + BC persistently reduced 44.5 % and 60.0-62.6 % NH3 losses than CK in the wheat season as influenced by pH and nitrate concentration. Moreover, BC and MPs + BC increased humic acid-like substances in soil dissolved organic matter by an average of 159.1 % and 179.6 % than CK, respectively, in rice and wheat seasons. The increased adsorption of soil NH4+ and the promotion of crop root growth were the main mechanisms of NH3 reduction. Our findings partially revealed the mechanisms of the coexistence of MPs and BC on NH3 mitigation in rice-wheat rotational ecosystems.


Assuntos
Amônia , Oryza , Amônia/análise , Carvão Vegetal/química , Ecossistema , Fertilizantes/análise , Substâncias Húmicas , Microplásticos , Nitratos , Nitrogênio/análise , Oryza/química , Plásticos , Poliésteres , Polietilenos , Solo/química , Triticum , Volatilização
8.
Adv Sci (Weinh) ; 7(7): 1901819, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274292

RESUMO

Placenta-origin pregnancy complications, including preeclampsia (PE), gestational diabetes mellitus (GDM), fetal growth restriction (FGR), and macrosomia (MA) are common occurrences in pregnancy, resulting in significant morbidity and mortality for both mother and fetus. However, despite their frequency, there are no reliable methods for the early diagnosis of these complications. Since cfDNA is mainly derived from placental trophoblasts and maternal hematopoietic cells, it might have information for gene expression which can be used for disease prediction. Here, low coverage whole-genome sequencing on plasma DNA from 2,199 pregnancies is performed based on retrospective cohorts of 3,200 pregnant women. Read depth in the promoter regions is examined to define read-depth distribution patterns of promoters for pregnancy complications and controls. Using machine learning methods, classifiers for predicting pregnancy complications are developed. Using these classifiers, complications are successfully predicted with an accuracy of 80.3%, 78.9%, 72.1%, and 83.0% for MA, FGR, GDM, and PE, respectively. The findings suggest that promoter profiling of cfDNA may be used as a biological biomarker for predicting pregnancy complications at early gestational age.

9.
Food Res Int ; 120: 733-739, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000292

RESUMO

The organic agricultural products has been growing rapidly in recent years. However, a potential food safe risk, resulted by introduction more antibiotic resistant genes (ARGs) accompanied with animal manure using to organic farming, has long been overlooked. In current study, the bacterial community, 22 tetracycline, 3 aminoglycoside and 4 ß-lactams ARGs were respectively investigated in the organic, chemical and wild Houttuynia cordata Thunb (HCT). A total of 9 tetracycline, 3 aminoglycoside and 2 ß-lactam ARG subtypes were detected, and the organic HCT harbored more ARG subtypes. The absolute and relative abundance of total ARGs in organic HCT was strikingly higher than that in chemical and wild HCT. The Enterobacteriaceae, Aeromonadaceae, Pseudomonadceae, Moraxellaceae and Oxalobacteraceae were the dominant taxa in the chemical and wild HCT, but in the organic HCT, only Enterobacteriaceae posed 83.23% - 87.40% of bacterial community. Fourteen bacterial families might be the possible hosts of ARG subtypes in the HCT. Enterobacteriaceae was a possible host of most ARG subtypes, including tetA, tetB, tetC, tetE and aadA, and it was the main bacteria affecting the behavior of ARGs in the HCT. Additionally, the tetracycline ARG subtypes had more possible hosts. These results help to better understand the ARG potential food safe risk and develop effective measures to prevent the ARG dissemination in organic agricultural product.


Assuntos
Resistência Microbiana a Medicamentos/genética , Inocuidade dos Alimentos , Houttuynia/genética , Houttuynia/microbiologia , Agricultura Orgânica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...