Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(15): e2305541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351659

RESUMO

Non-small-cell lung cancer (NSCLC) is a highly lethal tumor that often develops resistance to targeted therapy. It is shown that Tank-binding kinase 1 (TBK1) phosphorylates AGO2 at S417 (pS417-AGO2), which promotes NSCLC progression by increasing the formation of microRNA-induced silencing complex (miRISC). High levels of pS417-AGO2 in clinical NSCLC specimens are positively associated with poor prognosis. Interestingly, the treatment with EGFR inhibitor Gefitinib can significantly induce pS417-AGO2, thereby increasing the formation and activity of oncogenic miRISC, which may contribute to NSCLC resistance to Gefitinib. Based on these, two therapeutic strategies is developed. One is jointly to antagonize multiple oncogenic miRNAs highly expressed in NSCLC and use TBK1 inhibitor Amlexanox reducing the formation of oncogenic miRISC. Another approach is to combine Gefitinib with Amlexanox to inhibit the progression of Gefitinib-resistant NSCLC. This findings reveal a novel mechanism of oncogenic miRISC regulation by TBK1-mediated pS417-AGO2 and suggest potential therapeutic approaches for NSCLC.


Assuntos
Aminopiridinas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética
2.
Cell Mol Life Sci ; 81(1): 73, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308713

RESUMO

N4 acetylcytidine (ac4C) modification mainly occurs on tRNA, rRNA, and mRNA, playing an important role in the expression of genetic information. However, it is still unclear whether microRNAs have undergone ac4C modification and their potential physiological and pathological functions. In this study, we identified that NAT10/THUMPD1 acetylates primary microRNAs (pri-miRNAs) with ac4C modification. Knockdown of NAT10 suppresses and augments the expression levels of mature miRNAs and pri-miRNAs, respectively. Molecular mechanism studies found that pri-miRNA ac4C promotes the processing of pri-miRNA into precursor miRNA (pre-miRNA) by enhancing the interaction of pri-miRNA and DGCR8, thereby increasing the biogenesis of mature miRNA. Knockdown of NAT10 attenuates the oncogenic characters of lung cancer cells by regulating miRNA production in cancers. Moreover, NAT10 is highly expressed in various clinical cancers and negatively correlated with poor prognosis. Thus, our results reveal that NAT10 plays a crucial role in cancer initiation and progression by modulating pri-miRNA ac4C to affect miRNA production, which would provide an attractive therapeutic strategy for cancers.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Citidina/genética , Neoplasias/genética
3.
Mol Oncol ; 18(1): 170-189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867415

RESUMO

Endoribonuclease DICER is an RNase III enzyme that mainly processes microRNAs in the cytoplasm but also participates in nuclear functions such as chromatin remodelling, epigenetic modification and DNA damage repair. The expression of nuclear DICER is low in most human cancers, suggesting a tight regulation mechanism that is not well understood. Here, we found that ubiquitin carboxyl-terminal hydrolase 7 (USP7), a deubiquitinase, bounded to DICER and reduced its nuclear protein level by promoting its ubiquitination and degradation through MDM2, a newly identified E3 ubiquitin-protein ligase for DICER. This USP7-MDM2-DICER axis impaired histone γ-H2AX signalling and the recruitment of DNA damage response (DDR) factors, possibly by influencing the processing of small DDR noncoding RNAs. We also showed that this negative regulation of DICER by USP7 via MDM2 was relevant to human tumours using cellular and clinical data. Our findings revealed a new way to understand the role of DICER in malignant tumour development and may offer new insights into the diagnosis, treatment and prognosis of cancers.


Assuntos
Neoplasias , Ribonuclease III , Humanos , Dano ao DNA , Reparo do DNA , Neoplasias/genética , Neoplasias/tratamento farmacológico , Proteínas Nucleares/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação
4.
Oncogene ; 42(14): 1058-1071, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36765146

RESUMO

Receptor-type protein tyrosine phosphatase α (RPTPα) is one of the typical PTPs that play indispensable roles in many cellular processes associated with cancers. It has been considered as the most powerful regulatory oncogene for Src activation, however it is unclear how its biological function is regulated by post-translational modifications. Here, we show that the extracellular segment of RPTPα is highly N-glycosylated precisely at N21, N36, N68, N80, N86, N104 and N124 sites. Such N-glycosylation modifications mediated by glucose concentration alter the subcellular localization of RPTPα from Golgi apparatus to plasma membrane, enhance the interaction of RPTPα with Src, which in turn enhances the activation of Src and ultimately promotes tumor development. Our results identified the N-glycosylation modifications of RPTPα, and linked it to glucose starvation and Src activation for promoting tumor development, which provides new evidence for the potential antitumor therapy.


Assuntos
Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores , Humanos , Membrana Celular/metabolismo , Glicosilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Classe 4 Semelhantes a Receptores/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo , Processamento de Proteína Pós-Traducional
5.
Nat Commun ; 12(1): 5416, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518544

RESUMO

Hypoxia is the most prominent feature in human solid tumors and induces activation of hypoxia-inducible factors and their downstream genes to promote cancer progression. However, whether and how hypoxia regulates overall mRNA homeostasis is unclear. Here we show that hypoxia inhibits global-mRNA decay in cancer cells. Mechanistically, hypoxia induces the interaction of AGO2 with LUBAC, the linear ubiquitin chain assembly complex, which co-localizes with miRNA-induced silencing complex and in turn catalyzes AGO2 occurring Met1-linked linear ubiquitination (M1-Ubi). A series of biochemical experiments reveal that M1-Ubi of AGO2 restrains miRNA-mediated gene silencing. Moreover, combination analyses of the AGO2-associated mRNA transcriptome by RIP-Seq and the mRNA transcriptome by RNA-Seq confirm that AGO2 M1-Ubi interferes miRNA-targeted mRNA recruiting to AGO2, and thereby facilitates accumulation of global mRNAs. By this mechanism, short-term hypoxia may protect overall mRNAs and enhances stress tolerance, whereas long-term hypoxia in tumor cells results in seriously changing the entire gene expression profile to drive cell malignant evolution.


Assuntos
Proteínas Argonautas/genética , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Metionina/genética , RNA Mensageiro/genética , Ubiquitinação , Células A549 , Proteínas Argonautas/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Inativação Gênica , Células HEK293 , Células HeLa , Humanos , Hipóxia , Metionina/metabolismo , MicroRNAs/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Células PC-3 , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo
6.
Nucleic Acids Res ; 49(5): 2859-2877, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33577677

RESUMO

N 6-Methyladenosine (m6A) is the most abundant modification within diverse RNAs including mRNAs and lncRNAs and is regulated by a reversible process with important biological functions. Human YTH domain family 2 (YTHDF2) selectively recognized m6A-RNAs to regulate degradation. However, the possible regulation of YTHDF2 by protein post-translational modification remains unknown. Here, we show that YTHDF2 is SUMOylated in vivo and in vitro at the major site of K571, which can be induced by hypoxia while reduced by oxidative stress and SUMOylation inhibitors. SUMOylation of YTHDF2 has little impact on its ubiquitination and localization, but significantly increases its binding affinity of m6A-modified mRNAs and subsequently results in deregulated gene expressions which accounts for cancer progression. Moreover, Disease-free survival analysis of patients with lung adenocarcinoma derived from TCGA dataset reveals that higher expression of YTHDF2 together with higher expression of SUMO1 predicts poor prognosis. Our works uncover a new regulatory mechanism for YTHDF2 recognition of m6A-RNAs and highlight the importance of YTHDF2 SUMOylation in post-transcriptional gene expression regulation and cancer progression.


Assuntos
Adenosina/análogos & derivados , Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sumoilação , Adenosina/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Progressão da Doença , Humanos , Lisina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Estresse Oxidativo , Estabilidade de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Transcriptoma , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...