Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Am J Transl Res ; 16(4): 1375-1382, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715833

RESUMO

PURPOSE: To analyze the influence of propranolol (Prop) plus methimazole (MMI) on curative efficacy and thyroid function (TF) of patients with hyperthyroidism (HT). METHODS: In this retrospective study, 107 cases of HT presented between August 2019 and August 2021 were grouped according to different therapeutic regimens: a control group (the Con) with 53 cases treated with MMI, and a research group (the Res) with 54 cases treated with Prop + MMI. Inter-group comparisons were performed in terms of the following domains: heart rate (HR), efficacy, adverse reactions (ARs), TF parameters (free triiodothyronine, FT3; free thyroxine, FT4; thyroid stimulating hormone, TSH), hepatic function indicators (alanine aminotransferase, ALT; aspartate aminotransferase, AST), and quality of life (Short-Form 36 Item Health Survey, SF-36). Finally, multivariate analysis was performed by Logistic regression to determine the risk factors leading to the ineffectiveness of treatment. RESULTS: The analysis showed an obviously higher total effective rate and an evidently lower AR rate in the Res compared with the Con group. Besides, the Res group had notably lower FT3, FT4, ALT and AST and statistically higher TSH after treatment compared with the baseline (before treatment) and the Con group. Higher SF-36 scores were also determined in the Res group. Finally, the results of Logistic regression analysis revealed that AST was an independent risk factor for ineffective treatment. CONCLUSIONS: Prop plus MMI is effective in the treatment of HT, which can effectively improve the HR, thyroid hormone levels, hepatic function, and quality of life of patients, with a lower incidence of ARs.

2.
Sci Data ; 11(1): 477, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724643

RESUMO

Gossypium purpurascens is a member of the Malvaceae family, holds immense economic significance as a fiber crop worldwide. Abiotic stresses harm cotton crops, reduce yields, and cause economic losses. Generating high-quality reference genomes and large-scale transcriptomic datasets across diverse conditions can offer valuable insights into identifying preferred agronomic traits for crop breeding. The present research used leaf tissues to conduct PacBio Iso-seq and RNA-seq analysis. We carried out an in-depth analysis of DEGs using both correlations with cluster analysis and principal component analysis. Additionally, the study also involved the identification of both lncRNAs and CDS. We have prepared RNA-seq libraries from 75 RNA samples to study the effects of drought, salinity, alkali, and saline-alkali stress, as well as control conditions. A total of 454.06 Gigabytes of transcriptome data were effectively validated through the identification of differentially expressed genes and KEGG and GO analysis. Overwhelmingly, gene expression profiles and full-length transcripts from cotton tissues will aid in understanding the genetic mechanism of abiotic stress tolerance in G. purpurascens.


Assuntos
Gossypium , RNA-Seq , Estresse Fisiológico , Transcriptoma , Gossypium/genética , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas , Salinidade , RNA de Plantas/genética , Folhas de Planta/genética
3.
Cell Discov ; 10(1): 44, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38649348

RESUMO

Exposure to PM2.5, a harmful type of air pollution, has been associated with compromised male reproductive health; however, it remains unclear whether such exposure can elicit transgenerational effects on male fertility. Here, we aim to examine the effect of paternal exposure to real-world PM2.5 on the reproductive health of male offspring. We have observed that paternal exposure to real-world PM2.5 can lead to transgenerational primary hypogonadism in a sex-selective manner, and we have also confirmed this phenotype by using an external model. Mechanically, we have identified small RNAs (sRNAs) that play a critical role in mediating these transgenerational effects. Specifically, miR6240 and piR016061, which are present in F0 PM sperm, regulate intergenerational transmission by targeting Lhcgr and Nsd1, respectively. We have also uncovered that piR033435 and piR006695 indirectly regulate F1 PM sperm methylation by binding to the 3'-untranslated region of Tet1 mRNA. The reduced expression of Tet1 resulted in hypermethylation of several testosterone synthesis genes, including Lhcgr and Gnas, impaired Leydig cell function and ultimately led to transgenerational primary hypogonadism. Our findings provide insights into the mechanisms underlying the transgenerational effects of paternal PM2.5 exposure on reproductive health, highlighting the crucial role played by sRNAs in mediating these effects. The findings underscore the significance of paternal pre-conception interventions in alleviating the adverse effects of environmental pollutants on reproductive health.

4.
Int J Biol Sci ; 20(6): 1992-2007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617547

RESUMO

Objective: Osteoarthritis (OA) is the most prominent chronic arthritic disease, affecting over 3 billion people globally. Synovial macrophages, as immune cells, play an essential role in cartilage damage in OA. Therefore, regulating macrophages is crucial for controlling the pathological changes in OA. Triggering receptor expressed on myeloid cells 2 (TREM2), as expressed on immune cell surfaces, such as macrophages and dendritic cells, has suppressed inflammation and regulated M2 macrophage polarization but demonstrated an unknown role in synovial macrophage polarization in OA. This study aimed to investigate TREM2 expression downregulation in OA mice macrophages. Furthermore, the expression trend of TREM2 was associated with polarization-related molecule expression in macrophages of OA mice. Results: We used TREM2 knockout (TREM2-KO) mice to observe that TREM2 deficiency significantly exacerbated the joint inflammation response in OA mice, thereby accelerating disease progression. Separating macrophages and chondrocytes from TREM2-KO mice and co-cultivating them significantly increased chondrocyte apoptosis and inhibited chondrocyte proliferation. Further, TREM2 deficiency also significantly enhanced phosphatidylinositol 3-kinase(PI3K)/AKT signaling pathway activation, increasing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling and C-X-C Motif Chemokine Ligand 3 (CXCL3) expression. Furthermore, NF-κB signaling pathway inhibition significantly suppressed arthritis inflammation in OA mice, thereby effectively alleviating TREM2 deficiency-related adverse effects on chondrocytes. Notably, knocking down CXCL3 of TREM2-KO mice macrophages significantly inhibits inflammatory response and promotes chondrocyte proliferation. Intravenous recombinant TREM2 protein (soluble TREM2, sTREM2) injection markedly promotes macrophage polarization from M1 to M2 and improves the joint tissue pathology and inflammatory response of OA. Conclusion: Our study reveals that TREM2 promotes macrophage polarization from M1 to M2 during OA by NF-κB/CXCL3 axis regulation, thereby improving the pathological state of OA.


Assuntos
NF-kappa B , Osteoartrite , Animais , Camundongos , Quimiocinas CXC , Inflamação , Glicoproteínas de Membrana/genética , Osteoartrite/genética , Fosfatidilinositol 3-Quinases , Receptores Imunológicos/genética , Transdução de Sinais/genética
5.
J Am Chem Soc ; 146(15): 10908-10916, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579155

RESUMO

Self-assembly of sophisticated polyhedral cages has drawn much attention because of their elaborate structures and potential applications. Herein, we report the anion-coordination-driven assembly of the first A8L12 (A = anion, L = ligand) octanuclear cubic structures from phosphate anion and p-xylylene-spaced bis-bis(urea) ligands via peripheral templating of countercations (TEA+ or TPA+). By attaching terminal aryl rings (phenyl or naphthyl) to the ligand through a flexible (methylene) linker, these aryls actively participate in the formation of plenty of "aromatic pockets" for guest cation binding. As a result, multiple peripheral guests (up to 22) of suitable size are bound on the faces and vertices of the cube, forming a network of cation-π interactions to stabilize the cube structure. More interestingly, when chiral ligands were used, either diastereomers of mixed Λ- and Δ-configurations (with TEA+ countercation) for the phosphate coordination centers or enantiopure cubes (with TPA+) were formed. Thus, the assembly and chirality of the cube can be modulated by remote terminal groups and peripheral templating tetraalkylammonium cations.

6.
Drug Discov Today ; 29(5): 103975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580164

RESUMO

Discoidin domain receptor (DDR)-1 has a crucial role in regulating vital processes, including cell differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. Overexpression or activation of DDR1 in various pathological scenarios makes it a potential therapeutic target for the treatment of cancer, fibrosis, atherosclerosis, and neuropsychiatric, psychiatric, and neurodegenerative disorders. In this review, we summarize current therapeutic approaches targeting DDR1 from a medicinal chemistry perspective. Furthermore, we analyze factors other than issues of low selectivity and risk of resistance, contributing to the infrequent success of DDR1 inhibitors. The complex interplay between DDR1 and the extracellular matrix (ECM) necessitates additional validation, given that DDR1 might exhibit complex and synergistic interactions with other signaling molecules during ECM regulation. The mechanisms involved in DDR1 regulation in cancer and inflammation-related diseases also remain unknown.


Assuntos
Receptor com Domínio Discoidina 1 , Terapia de Alvo Molecular , Neoplasias , Humanos , Receptor com Domínio Discoidina 1/metabolismo , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Animais , Neoplasias/tratamento farmacológico , Matriz Extracelular/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Comput Med Imaging Graph ; 114: 102366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471329

RESUMO

Anomaly detection is an important yet challenging task in medical image analysis. Most anomaly detection methods are based on reconstruction, but the performance of reconstruction-based methods is limited due to over-reliance on pixel-level losses. To address the limitation, we propose a patch-wise contrastive learning-based auto-encoder for medical anomaly detection. The key contribution is the patch-wise contrastive learning loss that provides supervision on local semantics to enforce semantic consistency between corresponding input-output patches. Contrastive learning pulls corresponding patch pairs closer while pushing non-corresponding ones apart between input and output, enabling the model to learn local normal features better and improve discriminability on anomalous regions. Additionally, we design an anomaly score based on local semantic discrepancies to pinpoint abnormalities by comparing feature difference rather than pixel variations. Extensive experiments on three public datasets (i.e., brain MRI, retinal OCT, and chest X-ray) achieve state-of-the-art performance, with our method achieving over 99% AUC on retinal and brain images. Both the contrastive patch-wise supervision and patch-discrepancy score provide targeted advancements to overcome the weaknesses in existing approaches.


Assuntos
Encéfalo , Aprendizagem , Neuroimagem , Retina/diagnóstico por imagem
8.
J Acoust Soc Am ; 155(3): 1747-1758, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436426

RESUMO

A room was treated to be predominantly retroreflective in the high frequency range by introducing arrays of cube corner retroreflectors (CCRs) over most surfaces (excluding the floor). In a small room (volume 55 m3), 156 CCRs in the form of square trihedra with 350 mm edge lengths were used as wall and ceiling treatment. The horizontal plane distribution of reflected energy was measured from omnidirectional sources, and a head and torso simulator was used to measure voice support. Results show a high concentration of reflected energy returned to omnidirectional source positions in high frequency octave bands (2-8 kHz). Finite-difference time-domain (FDTD) simulations of the room yielded similar distributions to the omnidirectional measurements, showing greater sound concentration when more CCRs are introduced. By contrast, FDTD simulation of an equivalent flat-surfaced room yielded no reflected sound concentration at the source, with results close to diffuse field theory in high frequency octave bands. Measured voice support values derived from oral-binaural room impulse responses exceed diffuse theory expectations by 5 dB. Thus, the paper demonstrates that retroreflective array treatment can change room acoustical conditions, concentrating reflected energy onto an arbitrarily located source.

9.
Heliyon ; 10(5): e27466, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463824

RESUMO

Objective: Chondrocyte death is the hallmark of cartilage degeneration during osteoarthritis (OA). However, the specific pathogenesis of cell death in OA chondrocytes has not been elucidated. This study aims to validate the role of CDKN1A, a key programmed cell death (PCD)-related gene, in chondrogenic differentiation using a combination of single-cell and bulk sequencing approaches. Design: OA-related RNA-seq data (GSE114007, GSE55235, GSE152805) were downloaded from Gene Expression Omnibus database. PCD-related genes were obtained from GeneCards database. RNA-seq was performed to annotate the cell types in OA and control samples. Differentially expressed genes (DEGs) among those cell types (scRNA-DEGs) were screened. A nomogram of OA was constructed based on the featured genes, and potential drugs targeting the featured genes were predicted. The presence of key genes was confirmed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), Western blot (WB), and immunohistochemistry (IHC). Micromass culture and Alcian blue staining were used to determine the effect of CDKN1A on chondrogenesis. Results: Six cell types, namely HomC, HTC, RepC, preFC, FC, and RegC, were annotated in scRNA-seq data. Five featured genes (JUN, CDKN1A, HMGB2, DDIT3, and DDIT4) were screened by multiple biological information analysis methods. TAXOTERE had the highest ability to dock with DDIT3. Functional analysis indicated that CDKN1A was enriched in processes related to collagen catabolism and acts as a positive regulator of autophagy. Additionally, CDKN1A was found to be associated with several KEGG pathways, including those involved in acute myeloid leukemia and autoimmune thyroid disease. CDKN1A was confirmed down-regulated in the joint tissues of OA mouse model and OA model cell. Inhibiting the expression of CDKN1A can significantly suppress the differentiation of OA chondrocytes. Conclusion: Our findings highlight the critical role of CDKN1A in promoting cartilage formation in both in vivo and in vitro and suggest its potential as a therapeutic target for OA treatment.

10.
IEEE Trans Image Process ; 33: 2770-2782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551828

RESUMO

Anomaly detection is an important task for medical image analysis, which can alleviate the reliance of supervised methods on large labelled datasets. Most existing methods use a pixel-wise self-reconstruction framework for anomaly detection. However, there are two challenges of these studies: 1) they tend to overfit learning an identity mapping between the input and output, which leads to failure in detecting abnormal samples; 2) the reconstruction considers the pixel-wise differences which may lead to an undesirable result. To mitigate the above problems, we propose a novel heterogeneous Auto-Encoder (Hetero-AE) for medical anomaly detection. Our model utilizes a convolutional neural network (CNN) as the encoder and a hybrid CNN-Transformer network as the decoder. The heterogeneous structure enables the model to learn the intrinsic information of normal data and enlarge the difference on abnormal samples. To fully exploit the effectiveness of Transformer in the hybrid network, a multi-scale sparse Transformer block is proposed to trade off modelling long-range feature dependencies and high computational costs. Moreover, the multi-stage feature comparison is introduced to reduce the noise of pixel-wise comparison. Extensive experiments on four public datasets (i.e., retinal OCT, chest X-ray, brain MRI, and COVID-19) verify the effectiveness of our method on different imaging modalities for anomaly detection. Additionally, our method can accurately detect tumors in brain MRI and lesions in retinal OCT with interpretable heatmaps to locate lesion areas, assisting clinicians in diagnosing abnormalities efficiently.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Aprendizagem , Redes Neurais de Computação , Retina , Processamento de Imagem Assistida por Computador
11.
Eur J Med Chem ; 268: 116237, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387337

RESUMO

Acute myeloid leukemia (AML) patients harboring Fms-like tyrosine kinase 3 (FLT3) mutations often suffer from poor prognosis and relapse. Targeted protein degradation utilizing proteolysis targeting chimeras (PROTACs) is considered as a novel therapeutic strategy in drug discovery and may be a promising modality to target FLT3 mutations for the development of potent anti-AML drugs. Herein, a kind of FLT3-targeting PROTACs was rationally developed based on a FLT3 inhibitor previously reported by us. The representative compound 35 showed potent and selective antiproliferative activities against AML cells harboring FLT3 mutations. Western blot assay demonstrated that compound 35 effectively induced the degradation of FLT3-ITD and decreased the phosphorylation levels of FLT3-ITD, AKT, STAT5 and ERK in MV4-11 cells in a dose-dependent manner. Flow cytometry analysis illustrated that compound 35 strongly induced apoptosis and cell cycle arrest in MV4-11 cells in a dose-dependent manner. Moreover, compound 35 displayed favorable metabolic stability in in-vitro liver microsomes studies. Comparative molecular dynamic (MD) simulation studies further elucidated the underlying mechanism of compound 35 to stabilize the dynamic ensemble of the FLT3-compound 35-cereblon (CRBN) ternary complex. Taken together, compound 35 could serve as a lead molecule for developing FLT3 degraders against AML.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Proteólise , Leucemia Mieloide Aguda/metabolismo , Apoptose , Mutação , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
ChemSusChem ; 17(7): e202301563, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38361394

RESUMO

Environmental issues caused by waste polyethylene are becoming increasingly severe. Among potential treatment processes, microwave-assisted catalytic pyrolysis is promising for converting waste plastics into valuable products owing to its energy efficiency and environmental sustainability. Herein, a modified citric acid combustion method was used to prepare a series of metal oxide catalysts with loose porous structures. The prepared Fe-based catalysts doped with Co, Ni, or Cu were employed in the microwave-assisted catalytic pyrolysis of polyethylene. The bimetallic Co1Fe1Ox catalyst exhibited the best performance, yielding hydrogen at a rate of 60.7 mmol/gplastic. Further variation in the Co : Fe ratio revealed that the Co1Fe9Ox catalyst achieved the highest hydrogen production efficiency (63.64 mmol/gplastic). Similar oil-phase products were obtained over the various catalysts, as revealed by infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Furthermore, scanning electron microscopy (SEM) identified carbon nanotubes as the major solid product of pyrolysis, which were attached to the catalyst surface. Finally, a combination of thermogravimetric analysis, SEM, and energy-dispersive X-ray spectroscopy indicated that the reduction in catalytic activity following recycling was caused by the accumulation of carbonaceous products on the catalyst surface. Overall, Co1Fe9Ox catalysts were favorable for obtaining H2 and carbon nanotubes by the microwave-assisted pyrolysis of polyethylene.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38192193

RESUMO

OBJECTIVE: To integrate the qualitative research on the self-management experience of breast cancer patients and conduct a systematic review of their self-management experience. METHODS: Using a computer to search a series of databases such as CNKI, Wanfang, VIP, and China Biomedical Database, systematically collect and integrate qualitative research on the self-management experience of breast cancer patients, and the search time is limited to January 2010 to December 2022. The qualitative research quality evaluation standard of the Joanna Briggs Institute Centre for Evidence-Based Health Care in Australia was used as the evaluation standard of this project to complete the accurate evaluation of the literature; Meta-analysis was used to complete the effective integration of the results. RESULTS: 17 pieces of literature were included in this project, and 37 research results with strong integrity were extracted accordingly. On this basis, 7 different categories were summarised, and three integrated results were obtained: the experience of maintaining self-management, symptom recognition, and self-management. CONCLUSION: In the different stages of self-management of breast cancer patients, medical staff should give targeted guidance to help patients obtain a good prognosis.

14.
Sci Rep ; 14(1): 329, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172565

RESUMO

The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.


Assuntos
Apoptose , Neoplasias Colorretais , Humanos , Biomarcadores , Comunicação Celular , Linhagem Celular , Neoplasias Colorretais/genética , Prognóstico
15.
Chem Commun (Camb) ; 60(9): 1184-1187, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38193861

RESUMO

In this study, we designed and synthesized three conformation-adaptive Pd2L4- and Pd3L6-type coordination cages based on three dihydrophenazine-based ligands with different lengths. Interestingly, the shorter ligands L1 and L2 self-assembled into Pd2L4-type coordination cages while the longer ligand L3 formed Pd3L6-type one, mainly driven by the anion template effect. All coordination cages were confirmed through single-crystal X-ray diffraction, and their structural conformations underwent great changes compared with those of their corresponding ligands. Moreover, the conformational changes also significantly affected their photophysical and electrochemical properties which were distinct from their parent ligands.

16.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256233

RESUMO

Synapse loss is one of the most critical features in Alzheimer's disease (AD) and correlates with cognitive decline. Astrocytes mediate synapse elimination through multiple EGF-like domains 10 (MEGF10) pathways in the developing and adult brain to build the precise neural connectivity. However, whether and how astrocytes mediate synapse loss in AD remains unknown. We here find that the phagocytic receptor MEGF10 of astrocytes is significantly increased in vivo and in vitro, which results in excessive engulfment of synapses by astrocytes in APP/PS1 mice. We also observe that the astrocytic lysosomal-associated membrane protein 1 (LAMP1) is significantly elevated, colocalized with the engulfed synaptic puncta in APP/PS1 mice, and astrocytic lysosomes contain more engulfed synaptic puncta in APP/PS1 mice relative to wild type mice. Together, our data provide evidence that astrocytes excessively engulf synapses in APP/PS1 mice, which is mediated by increased MEGF10 and activated lysosomes. The approach targeting synapse engulfment pathway in astrocytes would be a potent therapy for AD.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/genética , Astrócitos , Sinapses , Modelos Animais de Doenças , Encéfalo
17.
Hum Gene Ther ; 35(1-2): 48-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646399

RESUMO

Oncolytic viruses are able to lyse tumor cells selectively in the liver without killing normal hepatocytes, in addition to activating the immune response. Oncolytic virus therapy is expected to revolutionize the treatment of liver cancer, including hepatocellular carcinoma (HCC), one of the most frequent and fatal malignancies. In this study, reverse genetics techniques were exploited to load NA fragments of the A/PuertoRico/8/34 virus (PR8) with GV1001 peptides derived from human telomerase reverse transcriptase. An in vitro assessment of the therapeutic effect of the recombinant oncolytic virus was followed by an in vivo study in mice with HCC. The recombinant virus was verified by sequencing of the recombinant viral gene sequence, and viral virulence was detected by hemagglutination assays and based on the 50% tissue culture infectious dose (TCID50). The morphological structure of the virus was observed by electron microscopy, and GV1001 peptide was localized by cellular immunofluorescence. The selective cytotoxicity of the recombinant oncolytic virus in vitro was demonstrated in cultured HCC cells and normal hepatocytes, as only the tumor cells were killed; the normal cells were not significantly altered. Consistent with the in vitro results, the recombinant oncolytic influenza virus significantly inhibited liver tumor growth in mice in vivo, in addition to inducing an antitumor immune response, including an increase in the number of CD4+ and CD8+ T lymphocytes and, in turn, improving survival. Our results suggest that oncolytic influenza virus carrying GV1001 is a promising immunotherapy in patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Vírus Oncolíticos , Orthomyxoviridae , Humanos , Camundongos , Animais , Vírus Oncolíticos/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Terapia Viral Oncolítica/métodos , Imunidade , Linhagem Celular Tumoral
18.
Adv Mater ; 36(4): e2309711, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983647

RESUMO

As an iron-dependent lipid peroxidation (LPO) mediated cell death pathway, ferroptosis offers promises for anti-tumor treatment. Photodynamic therapy (PDT) is an ideal way to generate reactive oxygen species (ROS) for LPO. However, the conventional PDT normally functions on subcellular organelles, such as endoplasmic reticulum, mitochondria, and lysosome, causing rapid cell death before triggering ferroptosis. Herein, the first lipid droplet (Ld)-targeting type I photosensitizer (PS) with enhanced superoxide anion (O2 -· ) production, termed MNBS, is reported. The newly designed PS selectively localizes at Ld in cells, and causes cellular LPO accumulation by generating sufficient O2 -· upon irradiation, and subsequently induces ferroptosis mediated chronical PDT, achieving high-efficient anti-tumor PDT in hypoxia and normoxia. Theoretical calculations and comprehensive characterizations indicate that the Ld targeting property and enhanced O2 -· generation of MNBS originate from the elevated H-aggregation tendency owing to dispersed molecular electrostatic distribution. Further in vivo studies using MNBS-encapsulated liposomes demonstrate the excellent anti-cancer efficacy as well as anti-metastatic activity. This study offers a paradigm of H-aggregation reinforced type I PS to achieve ferroptosis-mediated PDT.


Assuntos
Benzenossulfonatos , Ferroptose , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes , Peroxidação de Lipídeos , Gotículas Lipídicas , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/metabolismo , Linhagem Celular Tumoral
19.
IEEE Trans Med Imaging ; 43(3): 1102-1112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37883280

RESUMO

Unsupervised anomaly detection (UAD) aims to recognize anomalous images based on the training set that contains only normal images. In medical image analysis, UAD benefits from leveraging the easily obtained normal (healthy) images, avoiding the costly collecting and labeling of anomalous (unhealthy) images. Most advanced UAD methods rely on frozen encoder networks pre-trained using ImageNet for extracting feature representations. However, the features extracted from the frozen encoders that are borrowed from natural image domains coincide little with the features required in the target medical image domain. Moreover, optimizing encoders usually causes pattern collapse in UAD. In this paper, we propose a novel UAD method, namely Encoder-Decoder Contrast (EDC), which optimizes the entire network to reduce biases towards pre-trained image domain and orient the network in the target medical domain. We start from feature reconstruction approach that detects anomalies from reconstruction errors. Essentially, a contrastive learning paradigm is introduced to tackle the problem of pattern collapsing while optimizing the encoder and the reconstruction decoder simultaneously. In addition, to prevent instability and further improve performances, we propose to bring globality into the contrastive objective function. Extensive experiments are conducted across four medical image modalities including optical coherence tomography, color fundus image, brain MRI, and skin lesion image, where our method outperforms all current state-of-the-art UAD methods. Code is available at: https://github.com/guojiajeremy/EDC.


Assuntos
Neuroimagem , Tomografia de Coerência Óptica , Fundo de Olho , Processamento de Imagem Assistida por Computador
20.
Neural Regen Res ; 19(7): 1446-1453, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051886

RESUMO

ABSTRACT: Neuronal injury, aging, and cerebrovascular and neurodegenerative diseases such as cerebral infarction, Alzheimer's disease, Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis, and Huntington's disease are characterized by significant neuronal loss. Unfortunately, the neurons of most mammals including humans do not possess the ability to self-regenerate. Replenishment of lost neurons becomes an appealing therapeutic strategy to reverse the disease phenotype. Transplantation of pluripotent neural stem cells can supplement the missing neurons in the brain, but it carries the risk of causing gene mutation, tumorigenesis, severe inflammation, and obstructive hydrocephalus induced by brain edema. Conversion of neural or non-neural lineage cells into functional neurons is a promising strategy for the diseases involving neuron loss, which may overcome the above-mentioned disadvantages of neural stem cell therapy. Thus far, many strategies to transform astrocytes, fibroblasts, microglia, Müller glia, NG2 cells, and other glial cells to mature and functional neurons, or for the conversion between neuronal subtypes have been developed through the regulation of transcription factors, polypyrimidine tract binding protein 1 (PTBP1), and small chemical molecules or are based on a combination of several factors and the location in the central nervous system. However, some recent papers did not obtain expected results, and discrepancies exist. Therefore, in this review, we discuss the history of neuronal transdifferentiation, summarize the strategies for neuronal replenishment and conversion from glia, especially astrocytes, and point out that biosafety, new strategies, and the accurate origin of the truly converted neurons in vivo should be focused upon in future studies. It also arises the attention of replenishing the lost neurons from glia by gene therapies such as up-regulation of some transcription factors or down-regulation of PTBP1 or drug interference therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...