Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 17(12): 3066-9, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26046695

RESUMO

Computational analyses of the first catalytic asymmetric Fischer indolization (J. Am. Chem. Soc. 2011, 133, 18534) reveal that enantioselectivity arises from differences in hydrogen bonding and CH/π interactions between the substrate and catalyst in the operative transition states. This selectivity occurs despite strong π-stacking interactions that reduce the enantioselectivity.

2.
Science ; 347(6223): 719-20, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25678648
3.
Chemistry ; 20(48): 15833-9, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25293670

RESUMO

The pairing of transition metal catalysis with the reagent Selectfluor (F-TEDA-BF4) has attracted considerable attention due to its utility in myriad C-C and C-heteroatom bond-forming reactions. However, little mechanistic information is available for Selectfluor-mediated transition metal-catalyzed reactions and controversy surrounds the precise role of Selectfluor in these processes. We present herein a systematic investigation of homogeneous Au-catalyzed oxidative C-O bond-forming reactions using density functional theory calculations. Currently, Selectfluor is thought to serve as an external oxidant in Au(I)/Au(III) catalysis. However, our investigations suggest that these reactions follow a newly proposed mechanism in which Selectfluor functions as an electrophilic fluorinating reagent involved in a fluorination/defluorination cycle. We have also explored Selectfluor-mediated gold-catalyzed homocoupling reactions, which, when cyclopropyl propargylbenzoate is used as a substrate, lead to an unexpected byproduct.

4.
Org Biomol Chem ; 12(41): 8346-53, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25216295

RESUMO

Enantioselectivities for the allylation and propargylation of benzaldehyde catalyzed by bipyridine N,N'-dioxides were predicted using popular DFT methods. The results reveal deficiencies of several DFT methods while also providing a new explanation for the stereoselectivity of these reactions. In particular, even though many DFT methods provide accurate predictions of experimental ee's for these reactions, these predictions sometimes stem from qualitatively incorrect transition states. Overall, B97-D/TZV(2d,2p) provides the best compromise between accurate predictions of low-lying transition states and stereoselectivities for these reactions. The origin of stereoselectivity in these reactions was also examined, and arises from electrostatic interactions within the chiral electrostatic environment of a hexacoordinate silicon intermediate; the previously published transition state model for these reactions is flawed. Ultimately, these results suggest two strategies for the design of highly stereoselective catalysts for the propargylation of aromatic aldehydes, and pave the way for the computational design of novel catalysts for these reactions.

5.
Bioconjug Chem ; 25(9): 1730-8, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25158039

RESUMO

Detailed kinetic analyses of inverse electron-demand Diels­Alder cycloaddition and nitrilimine-alkene/alkyne 1,3-diploar cycloaddition reactions were conducted and the reactions were applied for rapid protein bioconjugation. When reacted with a tetrazine or a diaryl nitrilimine, strained alkene/alkyne entities including norbornene, trans-cyclooctene, and cyclooctyne displayed rapid kinetics. To apply these "click" reactions for site-specific protein labeling, five tyrosine derivatives that contain a norbornene, trans-cyclooctene, or cyclooctyne entity were genetically encoded into proteins in Escherichia coli using an engineered pyrrolysyl-tRNA synthetase-tRNA(CUA)(Pyl) pair. Proteins bearing these noncanonical amino acids were successively labeled with a fluorescein tetrazine dye and a diaryl nitrilimine both in vitro and in living cells.


Assuntos
Alcenos/química , Alcinos/química , Química Click , Proteínas/química , Coloração e Rotulagem/métodos , Catálise , Ciclo-Octanos/química , Proteínas de Escherichia coli/química , Cinética , Modelos Moleculares , Conformação Proteica , Tirosina/química
6.
Org Lett ; 16(12): 3268-71, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24915527

RESUMO

Matile et al. introduced the concept of anion-π catalysis [Angew. Chem., Int. Ed. 2013, 52, 9940; J. Am. Chem. Soc. 2014, 136, 2101], reporting naphthalene diimide (NDI)-based organocatalysts for the Kemp elimination reaction. We report computational analyses of the operative noncovalent interactions, revealing that anion-π interactions actually increase the activation barriers for some of these catalyzed reactions. We propose new catalysts that are predicted to achieve significant lowering of the activation energy through anion-π interactions.

7.
J Phys Chem B ; 118(21): 5653-9, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24802982

RESUMO

We present detailed computational analyses of the binding of four dinucleotides to a highly sequence-selective single-stranded DNA (ssDNA) binding antibody (ED-10) and selected point mutants. Anti-DNA antibodies are central to the pathogenesis of systemic lupus erythematosus (SLE), and a more complete understanding of the mode of binding of DNA and other ligands will be necessary to elucidate the role of anti-DNA antibodies in the kidney inflammation associated with SLE. Classical molecular mechanics based molecular dynamics simulations and density functional theory (DFT) computations were applied to pinpoint the origin of selectivity for the 5'-nucleotide. In particular, the strength of interactions between each nucleotide and the surrounding residues were computed using MMGBSA as well as DFT applied to a cluster model of the binding site. The results agree qualitatively with experimental binding free energies, and indicate that π-stacking, CH/π, NH/π, and hydrogen-bonding interactions all contribute to 5'-base selectivity in ED-10. Most importantly, the selectivity for dTdC over dAdC arises primarily from differences in the strength of π-stacking and XH/π interactions with the surrounding aromatic residues; hydrogen bonds play little role. These data suggest that a key Tyr residue, which is not present in other anti-DNA antibodies, plays a key role in the 5'-base selectivity, while we predict that the mutation of a single Trp residue can tune the selectivity for dTdC over dAdC.


Assuntos
Autoanticorpos/imunologia , DNA de Cadeia Simples/imunologia , Autoanticorpos/química , Sítios de Ligação , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Humanos , Ligação de Hidrogênio , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Modelos Moleculares , Nucleotídeos/química , Nucleotídeos/genética , Nucleotídeos/imunologia , Mutação Puntual , Teoria Quântica , Termodinâmica
8.
Chemistry ; 19(45): 15141-7, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24127275

RESUMO

The Diels-Alder cycloaddition of anthracene and nitrostyrene catalyzed by the squaramide-derived aminocatalysts (Sq) recently reported by Jørgensen and co-workers (Angew. Chem. 2012, 124, 10417; Angew. Chem. Int. Ed. 2012, 51, 10271) has been studied by using modern tools of computational quantum chemistry. This catalyst is compared with analogous urea-, thiourea-, and thiosquaramide-derived aminocatalysts. Ultimately, a thiosquar-amide-derived catalyst is predicted to result in the lowest free-energy barrier, while retaining the same high degree of enantioselectivity as Sq. This stems in part from the superior hydrogen-bonding ability of thiosquaramides, compared to squaramides and (thio)ureas. We also examine the hydrogen-bonding ability of (thio)ureas and (thio)-squaramides in model complexes. In contrast to previous work, we show that aromaticity does not contribute significantly to the enhanced hydrogen-bonding interactions of squaramides. Overall, thiosquaramide, which has not been explored in the context of either organocatalysis or molecular recognition, is predicted to lead to strong, co-planar hydrogen bonds, and should serve as a potent hydrogen-bonding element in a myriad of applications.

9.
J Phys Chem A ; 117(39): 10027-33, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23586416

RESUMO

The existing potential energy surfaces for the Li + HF system have been challenged by the experiments of Loesch, Stienkemeier, and co-workers. Here a very accurate potential energy surface has been obtained with rather rigorous theoretical methods. Methods up to full CCSDT have been pursued with basis sets as large as core correlated quintuple ζ. Reported here are the reactants, products, two transition states, and three intermediate complexes for this reaction. These reveal one previously undiscovered equilibrium geometry. The stationary point relative energies are very sensitive to level of theory. The reaction has a classical endothermicity of 2.6 kcal mol(-1). The complex Li···HF in the entrance valley lies 6.1 kcal/mol below the reactants. The expected transition state Li···H···F is bent with an angle of 72.2° and lies 4.5 kcal/mol above the reactants. The latter predicted classical barrier should be no more than one kcal/mol above the exact barrier. Not one but two product complexes lie 1.6 and 2.2 kcal/mol above reactants, respectively. Between the two product complexes, a second transition state, very broad, is found. The vibrational frequencies and zero-point vibrational energies (ZPVE) of all stationary points are reported, and significantly affect the relative energies.

10.
Org Lett ; 14(20): 5310-3, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23050736

RESUMO

A simple electrostatic model explains the enhanced stereoselectivity of N-oxide catalyzed allylations compared to propargylations, which in turn explicates the dearth of stereoselective N-oxide propargylation catalysts. These results suggest that N-oxide catalysts that are effective for both allylations and propargylations can be designed by targeting inherently stereoselective ligand configurations and through the manipulation of distortion effects in the operative transition states.

11.
J Phys Chem A ; 116(18): 4578-89, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22490267

RESUMO

Theoretical investigations of three equilibrium structures and two associated isomerization reactions of the GeCH(2) - HGeCH - H(2)GeC system have been systematically carried out. This research employed ab initio self-consistent-field (SCF), coupled cluster (CC) with single and double excitations (CCSD), and CCSD with perturbative triple excitations [CCSD(T)] wave functions and a wide variety of correlation-consistent polarized valence cc-pVXZ and cc-pVXZ-DK (where X = D, T, Q) basis sets. For each structure, the total energy, geometry, dipole moment, harmonic vibrational frequencies, and infrared intensities are predicted. Complete active space SCF (CASSCF) wave functions are used to analyze the effects of correlation on physical properties and energetics. For each of the equilibrium structures, vibrational second-order perturbation theory (VPT2) has been utilized to obtain the zero-point vibration corrected rotational constants, centrifugal distortion constants, and fundamental vibrational frequencies. The predicted rotational constants and anharmonic vibrational frequencies for 1-germavinylidene are in good agreement with available experimental observations. Extensive focal point analyses, including CCSDT and CCSDT(Q) energies and basis sets up to quintuple zeta, are used to obtain complete basis set (CBS) limit energies. At all levels of theory employed in this study, the global minimum of the GeCH(2) potential energy surface (PES) is confirmed to be 1-germavinylidene (GeCH(2), 1). The second isomer, germyne (HGeCH, 2) is predicted to lie 40.4(41.1) ± 0.3 kcal mol(-1) above the global minimum, while the third isomer, 2-germavinylidene (H(2)GeC, 3) is located 92.3(92.7) ± 0.3 kcal mol(-1) above the global minimum; the values in parentheses indicate core-valence and zero-point vibration energy (ZPVE) corrected energy differences. The barriers for the forward (1→2) and reverse (2→1) isomerization reactions between isomers 1 and 2 are 48.3(47.7) ± 0.3 kcal mol(-1) and 7.9(6.6) ± 0.3 kcal mol(-1), respectively. On the other hand, the barriers of the forward (2→3) and reverse (3→2) isomerization reactions between isomers 2 and 3 are predicted to be 55.2(53.2) ± 0.3 kcal mol(-1) and 3.3(1.6) ± 0.3 kcal mol(-1), respectively.

12.
J Am Chem Soc ; 134(6): 3095-102, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22229866

RESUMO

The enantioselective propargylation of aromatic aldehydes with allenyltrichlorosilanes catalyzed by bipyridine N-oxides was explored using density functional theory. Low-lying transition states for a highly enantioselective helical bipyridine N-oxide catalyst [Org. Lett. 2011, 13, 1654] were characterized at the B97-D/TZV(2d,2p) level of theory. Predicted free energy barrier height differences are in agreement with experimental ee's for the propargylation of benzaldehyde and substituted analogues. The origin of enantioselectivity was pinpointed through distortion-interaction analyses. The stereoselectivity arises in part from through-space electrostatic interactions of the carbonyl carbon with the Cl ligands bound to Si, rather than noncovalent aryl-aryl interactions between the aromatic aldehyde and the helix as previously proposed. Moreover, aryl-aryl interactions between the aldehyde and helix are predicted to favor transition states leading to the R enantiomer, and ultimately reduce the enantioselectivity of this reaction. (S)-2,2'-bipyridine N-oxide was studied as a model catalyst in order to quantify the inherent enantioselectivity arising from different chiral arrangements of ligands around the hexacoordinate silicon in the stereocontrolling transition state for these reactions. The predicted selectivities arising from different chiral octahedral silicon complexes provide guidelines for the development of transition state models for N-oxide-based alkylation catalysts.

13.
J Chem Phys ; 134(16): 164101, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21528944

RESUMO

The global minimum on the Si(2)CH(2) electronic singlet potential energy surface has been theoretically predicted to be a peculiar hydrogen bridged (Si···H···Si) disilacyclopropenylidene structure (Si(2)CH(2)). An accurate quartic force field for Si(2)CH(2) has been determined employing ab initio coupled-cluster theory with single and double excitations and a perturbative treatment for triple excitations [CCSD(T)], in combination with the correlation consistent core-valence quadruple zeta (cc-pCVQZ) basis set. The vibration-rotation coupling constants, equilibrium and zero-point vibration corrected rotational constants, centrifugal distortion constants, and harmonic and fundamental vibrational frequencies for six isotopologues of Si(2)CH(2) are predicted using vibrational second-order perturbation theory (VPT2). The anharmonic corrections for the vibrational motions involving the H bridged bonds are found to be more than 5% with respect to the corresponding harmonic vibrational frequencies. In this light, an experimental detection and characterization of disilacyclopropenylidene (Si(2)CH(2)) is highly desired.

14.
J Phys Chem A ; 114(40): 10850-6, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20836526

RESUMO

In this research, six low-lying triplet states of diphosphene (HPPH) and disphosphinylidene (PPH(2)) are systematically investigated starting from self-consistent field theory and proceeding to multireference coupled cluster methods using a wide range of basis sets. For each structure, the geometry, energy, dipole moment, harmonic vibrational frequencies, and infrared intensities are predicted. The triplet potential energy surface (PES) of P(2)H(2) is presented, based on systematically extrapolated coupled cluster energies and accounting for core-valence correlation, zero-point vibrational energy, and diagonal Born-Oppenheimer effects. Both (3)A'' pyramidal PPH(2) and (3)B skewed HPPH are minima on the triplet PES and lie 27.4 ± 0.3 and 32.4 ± 0.3 kcal mol(-1) above the global minimum structure closed-shell (1)A(g) trans-HPPH, respectively. The energy barrier for the isomerization reaction [(3)B skewed HPPH → (3)A'' pyramidal PPH(2)] is predicted to be 16.4 ± 0.3 kcal mol(-1). On this triplet PES, two equivalent (3)B skewed HPPH are converted via the (3)B(u) trans-HPPH transition state with a barrier of 9.1 ± 0.3 kcal mol(-1) or via the (3)B(2) cis-HPPH transition state with a barrier of 11.1 ± 0.3 kcal mol(-1). Moreover, the two equivalent (3)A'' pyramidal PPH(2) structures are connected through the (3)A(2) planar PPH(2) transition state with a barrier of 18.6 ± 0.3 kcal mol(-1). The energy crossing of the singlet and triplet adiabatic PES is studied using Mukherjee multireference coupled cluster method with the cc-pVQZ basis set, which predicts that the (3)B skewed HPPH is 1.4 kcal mol(-1) lower in energy than the corresponding (1)A skewed HPPH at the (3)B skewed HPPH optimized geometry.

15.
J Phys Chem A ; 113(47): 13227-36, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-19594123

RESUMO

The equilibrium structures of P(2)H(2) isomers and the associated isomerization transition states have been investigated systematically starting from self-consistent-field theory and proceeding to coupled cluster methods using a wide range of basis sets. For each structure, the geometry, energy, dipole moment, harmonic vibrational frequencies, and infrared intensities have been predicted. The global minimum has been confirmed to be planar trans-HPPH diphosphene, lying 3.2 kcal mol(-1) below cis-HPPH with the aug-cc-pVQZ CCSD(T) method upon inclusion of zero-point vibrational energy corrections. Diphosphinylidene, which has the connectivity PPH(2) and C(2v) symmetry, lies 25.2 kcal mol(-1) above the global minimum. The trans-cis isomerization reaction occurs via internal rotation with a barrier of 35.2 kcal mol(-1) using the cc-pVQZ Mk-MRCCSD (2e/2MO) method. This transition state exhibits multireference character and consequently properties were evaluated using CASSCF, MRCI, CASPT2, and Mk-MRCCSD methods with various basis sets. At the aug-cc-pVQZ CCSD(T) level, the transition state for the isomerization reaction between trans-HPPH and diphosphinylidene (planar PPH(2)) is predicted to be nonplanar with a torsional angle of 101.1 degrees . The corresponding barrier is estimated to be 48.2 kcal mol(-1).

16.
J Am Chem Soc ; 128(10): 3162-3, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16522094

RESUMO

We demonstrate the patterning of silica substrates with thymine (Thy-PS) and positively charged N-methylpyridinium (PVMP) polymers using photolithography and the subsequent orthogonal modification of these surfaces using diaminopyridine-functionalized polystyrene (DAP-PS) and carboxylate-derivatized CdSe/ZnS core-shell nanoparticles (COO-NP) through diamidopyridine-thymine three-point hydrogen bonding and pyridinium-carboxylate electrostatic interactions, respectively. This two-component orthogonal surface modification was accomplished in a self-sorting, single-step fashion, providing a versatile tool for the rapid and efficient creation of complex materials.


Assuntos
Nanoestruturas/química , Polímeros/química , Compostos de Cádmio/química , Microscopia de Fluorescência , Compostos de Piridínio/química , Compostos de Selênio/química , Dióxido de Silício/química , Análise Espectral , Sulfetos/química , Timina/química , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA